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SECTION 1

INTRODUCTION

1.1 Scope

Volume 2 of the present report givec an account c¢f theoretical
advances_and associated demonstrations made during the reporting period
relating to the synthesis of active controllers for large flexible
structures, Particular applications discussed include the quenching of
vibrations in support structures for optical pointing systems and the
efficient generation of closed-~loop large-angle slewing maneuvers for
linear tracking. Certain aspects of discrete-time dynamic modeling for
structural vibration control are also treated in depth. The vehicles for
the demonstration examples are the ACOSS Model No. 2 representation of an
optical pointing system (for vibration control) and a rotating rigid hub
with four flexible appendages (for large-angle slew control). A concise
summary of the principal results contained in the present volume is given

in the remainder of Section 1.

1.1.1 Vibration Control

EBffective accommodation of disturbances is fundamental to closed-
leep regulation, being especially vital for the quenching of vibrations
in large flexible optical pointing systems. Accommodation of a (small)
finitz number of periodic disturbances at fixed known frequencies poses
only mild difficulty. Substantially wore difficult is the problem of
accommodating an aperiodic distu.bance having nonnegligilkile power

spectral density across a broad range of frequencies. In the preceding




reporting period, a scientific axperiment was conceived to examine the
ques%ion of active control synthesis for broadband disturbance accommoda-

tion in which the selection of reduced-order models and of active

transducers were to be given substantial consideration.

Sections 2 and 3 of the present volume taken together constitute
an initial account of progress in the study of broadband disturbance
accommodation for large flexikle vptical pointing systems. The
disturbance to be neutralized has a constant nonzero power spectral
density over the frequency range between 0 and 5 Hz. In the first part
{Section 2), attention is fncused primarily upon the selection of active
transducers, both by functional type and by location. The theoretical
basis of a recently-developed selectien algorithm is fully described; the
principal elements are full-rank matrix factorizations -~ in particular,
the QR~decomposition -- and their employwent in the representation of
golutions to least~squares approximation problems. The algorithm is
designed to select a relatively small number of actuators that have a
relatively high irflueiice on the variables to be requlated (in this case,
optical system pointing errors). Results of four examples with ACOSS
indel No. 2 demonstrate that selections are readily achievable that are
subgtantially fewer in number than the number of controlled modes, and
yet give promise of effective performance. 1In the second part (Sestion
3), attention is shifted to the design and evaluation of controllers for
ACOSE Model No. 2 associated with the four active transducer selections
deginribed in Section 2. The controller feedback structure is generated
using a textbook disturbance~rejection control design. Actempts at
stability-enhancing adjustments beyond meeting the specifications on the
optical pointing error are deliberately postponed in order to isolate the
influence upon the overall synthesis-process of the selection of reduced-
order nodels and of active transducers, including their mutual inter-
action. In each example, the effect of unmodeled modes upon control
system scability and performance is examined using an expanding family of

reduced-order evaluation models, In the evaluations, closed-loop
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stability over a range of frequencies substantially beyond that of the
design model is demonstrated.

In the modeling of dynamic systems, state space representation
provides a unifizd framework which abstracts certain system-theoretic
characteristics common to a wide variety of physical systems. The
resulting separation of dynamic characteristics from specific physical

¥ processes provides beneficial clarification. However, it has the
disadvantage of %asking the physics of the problem. The sharpened
understanding that follows from taking into account the unique
characteristics of a specific physical process usually increases the
performance achievable from a process controller. In this spirit, a
frrsh approach to sampled-data control for flexible structures is taken

in Section 4 i~ which second-order difference equations provide the

dynamic model. For the problem of velocity output feedback, explicit
sufficient conditions for stability in terms of the feedback gain matrix
and the sampling rate are given. Surprisingly, these conditions require
non-colocation of actuators and sensors as a function of the sampling
rate. The non-colocation property collapses to the familiar colocation

preperty for analog systems as the sampling period converges to zero.

]
i
i
i
!
!

1.1.2 Large-Angle Slew Control

P ]

Large~angle slewing maneuvers for flexible spacecraft generally

; require the consideration of aonlinear structural dynamics. However

‘ certain problems of substantial interest for applications require only

: the consideration of linear autonomous structural dynamics. Several such
‘ prot..ems are formulated and solved in Section 5; namely, the problem of

o ? cptimally tracking a known trajectory (without hard terminal

' constraints), and the problem of optimal linecar slew in which the

i terminal values of some or all of the state variables at a fixed finite

‘ terminal time are prescribed. The emphasis is upon obtaining explicit
expressions for soluticas of the necessary conditions for optimality in

; terms of matrix parameters which are solutions of lirear algebraic

- o B
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equations. The problem of computing solutions is thereby reduced from
one of numerical calculus (i.e., integration) to one of numerical linear
algebra, Significant increases in computational efficiency resulting
from this approach are demonstrated with a variety of examples on a
rotating rigid hub with four flexible appendages. The method of
obtaining explicit solution expressions is also shown to have direct
application to the efficient generation of feedback control solutions to

the general unconstrained fixed time linear optimal vontrol problem.

1.2 Limitations

The scientific expe-'iment relating to active control synthesis for
broadband disturbance acr .amodation is incomplete. Projected work
includes:

(1) Expansion of the class of candidates from which active

transducers are selected;

(2) Examiration of the interaction between the sélection of

reduced-order models and of active transducers; and

(3) Modifications of the controller feedback structure to ensure

an acceptable compromise hetween the requirement to
neutralize the effects of disturbances, and the limitations
imposed by an incomplete knowledge of structural and

disturbance characteristics,




SECTION 2

* PROGRESS ON SYNTHESIS OF ACTIVE CONTROL FGR BROADBAND
DISTURBANCE ACCOMMODATION

PART 1: ACTIVE TRANSDUCER SELECTION

2.1 Background

In the automatic control of dynamic systems, the achievement of
stability and a specifisd level of performance, in spite of anticipated
disturbances, is fundamental. When the cbject of control has substantial

inherent flexibility, the problem of accommodating disturbances is

aggravated by the tendency of the disturbances to excite structural
vibrations. Even with flexible structures, the effecis of.a few periodic
disturbances at known frequencies are rzlatively easy to accommodate.,
However, when the frequency of periodic disturbanqes is unknown or
variable, or when the digturbances are aperiodic, disturbance
accommodation is much more difficuit. Relatively ‘little has been written
regarding accommodation of the latter class of dis‘urbances in the
context of largas flexible structures. One careful study treating
unknown-frequency periodic disturbances [Ref. 2-1; has reported moderate
success. It is notable that the treatment reported gave careful
attention to the placement of active transducars (i.e., actuators anc<
sensors). The only study available to date on accommodation of aperiodic
disturbancas with a continuum frequency spectrum ("broadband”) in the
context of large flexible structures (Ref. 2-2) als® reports mcjerate

success, without however, giving any attention to the selection of active




transducers beyond the analysis developed for accommodating periodic

disturbances of known frequencies [Ref. 2-3].

The presence of a broadband disturbance escalates the importance
of giving careful attention to the selection of reduced~order models, the
selection of active transducers, and the interdependence of these two
selections. In Reference 2-4, we outlined a scientific experiment (not
in hardware) for the purpose of systematically investigating the impact
upon the performance of active broadband disturbance accommodation of
various assumptions relating to the selection of reduced-order models and
of active transducers. This ex <riment is not a single design attempt,
but rather a process involving a sequence of many variocusly-constrained
designs, in order to converge on an appropriate overall algorithm for

broadband disturbance accommodation with large flexible structures.

Sections 2 and 3 of the present report constitute the initial
report of progress in the conduct of the aforementioned experiment.
Section 2 focuses principally on the theory and app&icatioﬁ of the active
transducer selection strategy being employed, while Section 3 focuses on
the related matters of controller design and evaluation. Two very

encouraging trends have emerged from the results reported herein:

(1) Under appropriate assumptions, substantial reductions in the
number of active transducer pairs below the number of controlled modes
are feasible, which implies substantial design flexibility may be
available; and

(2) Using an expanding family of evaluation models, sxtability of
reduced-order controllers over a frequency range well beyond the range of

the design model) has bkeen demonstrated.

The significance of item (2) is that sophisticated adjustments of the
controller design have been deliberately postponed; this result reflects
principally the reward of careful attention to active transducer

selection.

2=-2
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The remainder of Section 2 is briefly summarized. The active
transducer selection strategy being employed in the scientific experiment
was briefly outlined in a previous report [Ref. 2-5, Sec. 3}]. In Section
2.2, a complete account of the theory that underlies this strategy is
given. In addition, all phases of the strategy are'éully discussed in
the light of the theoretical building blocks. In Section 2,3, a number
of applications of the selection strategy to ACOSS Model No. 2, under
varying assumptions, is presented. In Section 2.4, some principal
observations on the results are made. An appendix, Section 2.5, contains

the proof of some technical matters that arise in Section 2.2.

2,2 Theory: A Selection Algorithm

Most strategies for active transducer selection reported in the
literature use appropriately-defined indices of controllability and
observability to evaluate alternatives. The selection strategy proposed
and briefly outlined previously [Ref. 2-5, Sec. 3] approaches the
selection problem from a different direction. Linesr combinations of the
modal influence vectors associated with each actuator are sought which
best approximite the modal coefficient vectors of variables to be
regulated (e.g., line-of=~sight errors in an optical system). The
principal theoretical building blocks of this strategy are the special
properties of full-rank matrix factérizations (in particular, the
QR-decomposition) and the representation theory for solutions of least
squares approximation problems. 1In what follows, a complete though
concise account of this underlying theory is necessary to enable a proper

description of the construction and operation of the selection algorithm.

2~3




2.2.1 Fundamental Concepts

As will be seen shortly, least-squares approximation problems lead
naturally and directly to the Moore~Penrose generalized inverse. This
construction exists for arbitrary rectangular matrices A: nxm, but is not

quite so direct in the case that che inequality

k & renk(a) < min {n,m) (2-1)

bacomes strict. In that case, the ability to decompose A into factors is

extremely helpful. A decomposition of the form
A = BC (2-2)
where B: nxk and C: kxm satiscy
rank(B) = k = rank(C)

with k defined by Eq. (2-1), is called a full-rank factorization of A.

“t is well Xnown that every matrix has such a factorization [Ref. 2~6].
Although such factorizations are not unique, the class of all such

facuorizations is generated from a known factorization by the relations

for some nonsingular matrix Y [Ref., 2-7]. Full-rank factorizations
assune great importance in numerical linear algebra [Ref., 2-8].

Essential to the selection algorithm to be described later is the QR-
decomposition [Ref. 2-9], which always has embedded within it a full-rank

factorization.

2-4
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2¢.2.1.1 %he QR~Decomposition

The classical Gram-Schmidt orthugonalization [Ref. 2-10, pp.
127-128] is.a constructive process of transforming a set of linearly
independent vectors in an inner-product space into an orthonormal set,
The matrix representation of the result is the QR-decomposition. It
follows that every matrix has a QR-decomposition, whose specific
structure depends on the rank of the matrix. Since the results are

thoroughly discussed in the literature [e.g., Ref. 2-i1], the parte

relevant here are simply quoted.

Theorem 2-1 (Existence of QR-Decomposition). Assume that the matrix A:

nxm has rank k=min{n,m}. Then there exists a (nonsingular) column
permutation matrix P: mxm, a unitary matrix Q: nxn, and a matrix R: nxa
containing an upper triangular submatrix Ry: kxk with positive diagonal

elements, such that
AP = R T (2-3)

The structure of the R matrix is

[ R1] (2-4a)
R
A ) (2-4b)
0 .
or
[R1§ s ] (2-4c)

according as A is determinate (k=n=m), overdetermined (k=m<n), or under-

determined (k=n<m), respectively. O

¥
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The word "unitary" refers, in the complex case, to a matrix allowing
complex entries whose columns are orthogonal relative to the complex
inner product; the corresponding property in the real case refers to a
matrix restricted to real entries whose columns are orthogonal relative

to the real inner product ("orthogonal"),

. Theorem 2-1 has an obvious éxtension to the rank-deficient case
that k < min{n,m}. The extended result is used only in the proof of
Proposition 2-8 in the Appendix (Section 2.5). The decomposition of Eq.
(2-3) is a full-rank factorization (cf. Eq. (2-2)) except in the over-
determined case (cf. Eq. (2-4b)). In that case,.Eq. (2-3) is equivalent
to the full-rank factorization

AP = O4Rq

where Q4 is the partition of Q compatible with Ry.

For the intended application, étronger properties of the
nonsingular submatrix Ry are required than are evident in the
Gram-Schmidt interpretation as reflected in Theorem 2-1. A powerful tool
for accomplishing this is the following triangularization lemma of

Householder [Ref. 2-12].

Lemma 2-2. Assume that n-vectors a#0 and v are specified. Then there

exists a unit vector w: nx1 such that

H(a) & (In-zww*)a = fatv QO (2~5)

In Eq. (2-5), I, is the nxn identity matrix, the asterisk (*) denotes
the complex conjugate transpose operation, and the double bars denote the

vector norm generated by the inner product:




*
la!2 4 (a,a) = aa

Successive application of Householder transformations, each having the
form defined in Eq. (2-5), to columns of the A matrix, including
appropriate rearrangement (pivoting) of the columns at each step, leads
to the desired triangularization. Reliable and widely available software
for computing a QR-decompositioﬁ uses the Householder lemma (Ref. 2-13]}.
The stronger property that results is the following,

Theorem 2-3. In Theorem 2-1, elements of the matrix R4 [rij] may

be taken to have the diagonal dominance property:

2 j 2
r“' 3_ Xiﬂz rij ’ j:‘.z,o-c,k : f=1,000e,k (2-6)

In particular, this implies the (weaker) property that the diagonal
elements form a nonincreasing sequence:

r > 0 1] z=1l...lk-1 D (2"'7)

28 > T, g

The subtle distinction between the two theorems above should
be carefully noted. The results of Theoresm 2~1 dascribe every
QR~decomposition; the sharper results of Theorem 2-3 describe only those

QR-decompositions generated by the use of Householder transformations.

2.2,142 Solutions to Least-Squares Problems

Least-squares problems for finite-dimensional linear systems of

the form
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AX = Db (2-8)

with A: nxm become significant in the overdetermined case (n>m) in which
there are too many equations for a solution to exist (in general).
instead, one attempts to minimize a positive~definite guadratic function

of the difference, such as

*
Jxi A, » & (beax) " (b-ax) (2-9)
ox, more generally (apparently),
A *
Jw(x; 3, b) = (b-Ax) W(b-Ax) (2-10)

where W: nxn is Hermitian (i.e., W*=W) and positive definite. Being

positive definite however, W can be written in the factored form
W = L*,

with L: nxn nonsingular (Ref. 2-10, pp. 139-140]. This enables Eq.
(2-10) to be written as

Jglx; A, B) = (b - A0)*(b « Ax) = J(x; A, b) (2-11)

where b 4 Lb, A 4 LA, so that the least-squares problems associated with

" Eqe (2-10) and Eq. (2~9), respectively, are in fact equivalent under a

simple scalings It is therefore sufficient to discuss the relevant parts
of the lesaste~squares theory using BEg. (2-9), even though the selection
algorithm is formulated 1sing Eq. {2-10). Only the unconstrained
minimization of Eg. (2~9) is discuzsed. #Full details, including

treatment of conutrained minimization, can be found in Reference 2-11.,

The minima of Eq. (2-9) are precisaly the set of solutions to the

normal equations




g % gt
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gerronut &

A"(b-ax) = 0 ' (2-12)

It is worth noting that this result is a consequence of the geometric
structure of inner-product spaces [Ref. 2~7] and does not follow from the
methods of calculus (the cperation x » X of . complex conjugation being

nowhere differentiable). In addition, Eq. (2-12) provides a useful

geometric insight: at any least-squares minimum, the residual vector

) 4 b - Ax
associated with the linear system Eq. (2-8) is orthogonal to the range
space (i.e., the subspace spanned by the columns) of A, denoted by

col(a).

The solutions of the ncrmal equations form an affine space of
Aimension m-k, where m and k are defined by Eq. (2-1). Written

explicitly, they are:
t t .
X = Ab+ (Im - AAuw, w: nx1 arbitrary (2-13)

where the superscript (t) represents the Moore-Penrose inverse [Refs.
2-14, 2-15]. The basic properties of this generalized inverse will be
used without elaboration, as they are thnroughly documented [Ref. 2-16]
and have been discussed previously in a related context [Refs.

2-17, 2-18). It follows from these properties that the two terms in Eq.
(2-13) are orthogonal and, therefore, that the particular least-squares

solution

A'b

has (uniquely) the smallest norm of all the solutions Eq. (2-13).




Each least-squares solution gives the minimum value

g, 4
min

1(r - aaher? (2-14)
for the functional Eq. (2~-9). Geometrically, this represents the length
(squared) of the projection of b onto col(A)L, the orthogonal complement
of the range space of A. In particular, it follows that the minimum

value is zero if and only if
b e col(d) (2-15)

i.e., that Eq. (2-8) has an exact solution.

“he representation of least-sjuares solutions can be sharpened
substantially if the Moore-Penrose inverse is displayed using the QR-
decomposition of A. Two cases are distinguished:

(I) k = n < m, for which Eq. (2-15) is true; and

(XI) k =m < n, for which Eq. (2-15)"is false.

Theorem 2~4 (Case I). Assume that A has the decomposition of Eq. (2-3)

with kX = n < m. Then the minima of Eq. (2-9) are given by:
-1 t . * t .
(P"'x) = RQDb+ (I -RRw, w: nx!arbitrary (2-16)
If n=m, the set of Eq. (2-16) collapses to the unique solution

- - *
(*7'x) = rR7Q' - (2-17)
In both instances, the minimum value in Eq. (2-14) is zero.

This result is used in the initial stages of the selection algorithm.

2~10




an even richer structure develops in the naxt case.

Theorem 2-5 (Case II). Assume that A has the decomposition of Eq. (2-3)

with k = m < n. Denote by 9 = {Q¢: Qy] the partition of Q compatible
with the partitior of R in Eq. (2-4b). Then the minimum of Eq. (2-9) is
given (uniquely) by:

s I _
(P -'x) = R QD (2-18)
and the minimum value in Eq. (2-14) is

J_. = IQz*bﬂ g (2-19)

The significance of Theorem 2-5 arises from the righ structure of the
mappings associated with the matrices Q4: nxk and Qy: nx{n-k), which
are briefly summarized next. They all follow from viewing Eq. (2-3) in

the equivalent form

*
Q (AP) = R (2~-20)
which exhibits the final result of the Householder construction (cf.

Lemma 2~-2). It follows immediately that Eq. (2-20) =mbodies the two

equationa:

Q1 (AP) = R : (2-21)

and

2-11
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Q2 (ap) = O (2-22)

From Eqse. (2-21) and (2-22) it follows quite directly that Q4 and Qp

are orthogonal:

* N * N
* * .
Q 9 = L » ©Q = I . (2-23b)
and have range spaces
col(Q)) = col(Ap), col(Q,) = col(Ap)" (2-24)

respectively. Furthermore the product mappings

* *
Q1Q1 = In - Q2Q2 (2~25)

and
* * 2 6
are orthogonal projections, respectively (vf. Eqs. (2-23), onto the range

spaces listed in Eq. (2-24)., Note that Eq. (2-26) provides the link
between Eq. (2-14) and the result in Eq. (2-19). Theorem 2-5 forms the

principal basis for the selection algorithm.

The behavior of the minimum value in Eq. (2-14) as a function of
A, and in particular as columns are removed from A, is of considerable
interest for the active transducer selection problem. Roughly, one
expects that the minimum value does not change if columns of A are simply

rearranged, and that it does not decrease if a column of A is removed.
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Theorem 2-6. Let p be an integer, 1 < p < m, and denote by

Ai1-o-ip an arbitrary p-column submatrix of A. Then

A gk A, ) < ™R gy v , b) (2-27)
m — ’
XeE ‘ Yy i P

wrare E® denotes the appropriate a-dimensional i nuer pruduct space. (]

The proof of this result is deferred to .the Appendix (&ection 2.5).

2.2.2 Algorithm Formulation

It is now possible to give a precise formulation of the active

transducer selegction algorithm., It is assumed in what follows that:
(1) A reduced~order structural model has been chosen; and
(2) Sensors are to be colocated with actuators.

The focus is on determining an appropriate, and relatively small,

selection of actuators from a prespecified collection of candidates.

Dynamic equations in modal coordinates for the reduced-order model

to ke considered have the general form:

W+ 2zan 4 a0 = (87B,)u, + (47B)u (2-28)
T T,
y = (07, ) n+ (877,7) A (2-29)
T
z = (707 n (2-30)

2-13
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where n = (n1,-",nn)T is the vector 9f modal coordinates retained

in the reduced-order model; Q = diag(wj): nxn is the matrix of
characteristic frequencies; ¢: vxn is the truncation of the
principal~axis matrix of transformation defining the modal coordinates
{mode shapes of the reduced-order model), v being the number of physical
generalized coordinates; 2 = diag(gy,e¢**,gn): nxn is the matrix of

assumed modal damping ratios representing inherent structural damping;

up = (ug,eee,uy)T is the vector of inputs to the actuators;
up 5 (wy,eee,wy)T is the vector of disturbance inputs;
Y 2 (1,000,797 is the vector of outputs from the sensors; -

(z1,ooo,zs)T is the vector of variables to be regulated; and

Bp: vxm, Bp: vxy, Cp: &xv, Cy: 2xv, D: dxv are the influence

matrices associated with the actuators, distnrbances, displacement
sensors, rate sensors, and requlated variables, respectively. The
superscript (T) denotes matrix transpose. BEquations (2-28) through
(2-30) are written in a form that highlights the presence of generalized
node shapes (modal influence vectors) of the form oTx.

The selection problem is defined in terms of two sets of
parameters: :
(1)+ A collection  of actuator candidates, consisting of the
generalized node shapes @Tbg, where bg is the j-th column of

the matrix Bp in Eq. (2-28); and

(2) A collection & of requlation target vectors, consisting of
ihe generalized node shapes ®Tdi, where diT is the i-th row
of the matrix D in Eq. (2-30).

It is assused that the designer has a relatively wide range of choices
for actuators (in particular, having redundancy) both by functional type
and location for inclusion in the candidate collection /. The idea
behind collection &R is as follows: actuators are to be selected from
the collection ./ which have a relatively strong influence on each of the

vectors in collection & , thereby enhancing the prospects of achieving
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the desired regulation of the vector z in Eq. (2-30). 1In order to
clarify ideas and simplify the notation, the remaining discussion
identifies the regqulated variable z with the two—vecto}

(eLosx: €Losy) that is of interest in the applications of Section 2.3
and which represents line-of-sight (LOS) error parameters for an optical

system. The collection /8 then consists of the two elements:

LOSX A T LOSY A T "
b ¢ dLOSX ¢ b [/ dLOSY (2-31)
where dT and dT are the rows of D corresponding to the requlated
LOSX LOSY ponding gu~

variables e1ogx and epogy in Eq. (2-30).

Using the parameters from collections ¢ and & , an ideal
gelection problem, and a least-squares approximation to it, are defined.

Denote by

(W] & [a':eeeia] i nxy (2-32)

»
m

the matrix formed from elements of the actuator candidate collection 7.
(The type of correspondence defined by Eg. (2-32) is used repeatedly in
what follows.) It is assumed that the collection 4 is rich enough to

span the space EB of modal coordinates; i.e.,
sp(sd) = col(A) = E (2-33)

Then there exist coefficient vectors x = (x1,-o-,xP)T, Yy = (y1,-°°,yn)T

such that

LOSX

o
tn
[
.
o
.
]

and

2-15




pLOSY _ o Zju j

-

Ideal Selection Problem: Find a minimal subcollection /' of 4 and

real coefficient vectors x' = (xj), y' = (yj), j & 1(.l'), such that
LOSX _ .0 - I
b A'x' = ZjSI(JJ') ax'
and
LOSY _ ..., . i,
b AYE Lera ¥V

where the index set I{ ') is the subset of {1,ees,u} that identifies
which elements of f aras retained in -&', and A' 2 (2],
As a mors fsasible alternative to the ideal selection problem, the

following least-squares approximation is formulated..

Approximate Selection Problem: Find a subcollection ' of </ and

corresponding coefficient vectors x' = (Xj), y' = (yj), j e I(ud")
such that
(1 g xty at, BP0 & PO AT O - Ay ana (2-39)
g lyts &, U 2 (%Y - Ay ) TS - aryr) (2-35)

are minimized, where A' & [']; and

(2) the subcollection «Z' is minimal with respect to acceptable

increases in the minimum values:
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35 a0 b0 & TR g ey ar, pEO) (2-36)
3 ;a0 b 8 “‘;’,‘ 3 (y's A, b0 (2-37)

In the above, the matrix W: nxn is chosen to be real, symmetric, and
positive definite. However, in view of the equivalence, under
appropriate scaling, conveyed by Eq., (2~11), the discussion below omits
explicit reference to the weighting matrix W. Note that, although the

correspondence
A r A = A

defined by Eq. (2-32) does not distinquish between distinct column
rearrangements, Proposition 2-7 (Section 2.5) shows that such
distinguishability is inessential for its intended usage. Thus, the

approximate selection problem is well-defined.

A brief overview of the algorithm for the solution of the
approximate selection problem is as follows. A sequence of eliminations
from the actuator candidate collection & is generated on the basis of
information from least-squares solutions corresponding to Bgs. (2-34) and
(2-35) at each step. These solutions are displayed using the appropriate
OR-decomposition. Note that each elimination also leads to a reduction
in dimension of the inner-product space in which the least-squares
minimization is done. No matter what elimination sequence develops,
Theorem 2-6 guarantees a sequence of least-squares approximations that is
steadily deteriorating in quality in the sense that the sequence of norms
for the residual vector at each least-squares solution is nondecreasing.
When & has veer. reduced by eiimination to a collection &' for which
further elimination {(say to ") leads to the condition that either of
the minimum values Eq. (2-36) or (2-37) (corresponding to .2/" rather than

to /') exceeds a specified tolerance tg, the elimination sequence is
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terminated, and &' is taken to be a minimal subcollection. Next,

details of the elimination sequence are outlined.

2.2.2.1 Criteria for Elimination

In view of Theorem 2~-4, the search for a minimal subcollectica in
the sense of the approximate selection problem eventually requires
criteria for intelligently eliminating a column from a determinate or
overdetermined matrix. Two such criteria are discussed prior to
describing the elimination sequence. Consider a stage of the sequence at
which the matrix A = [dd(z)] of the remaining actuator candidates is
(say) overdeterm.ned with £ < n columns. Tﬁ; OR-~-decomposition of A has
the form of Eq. (2-3) with R having the form of Eq. (2-4h). Denote by x
and y, respectively the hnique solutions (cf. Eq. (2-18)) to the
least-squares problems associated with Bgs. (2-34) and (2-35). The
criteria for elimination of actuator candidates from A are defined in

terms of the matrices R, x, and y; in particular:

(I) the relative magnitude of the smallest diagonal element Lgg
of R17 and
(II) the relative magnitude of the products r,:xj, i=1,ee¢s, 8,

and L5450 j=1,0e0,2, respectively.

The rationale for each criterion is briefly discussed.

Criterion I. The scalar equations for the QR-decomposition of A have the

triangular structure:

3 1 2 j .
a’ = r.. +qr + eev + q°r. , =1,00¢,9% (2-38)
q 13 q 2j q JJ ! J ! 4

.

where the diagonal elements rjj of Ry form a nonincreasing sequeace

(cf. Eq. (2-7)). Denote by Sg-1 the (g-1)-dimensional subspace spanned

1 - . .
by the vectors {q ,ess, qz 1}. Since the vector az-qzt is in 3

28 2=1'

rzz is an upper bound for the Euclidean distance between a2 and 52-1:
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< r (2-39)

. L
= 1nf{na -sl: s ¢ 82-1} 2

L
d(a ' 52_1)

Because of the triangular structure of Egs. (2-38), 82_1 is also the
linear span of {al,ees, a%~1}, Therefore, Eq. (2-39) is a measure of
the near-dependence of af upon the preceding column vectors ai,
i=1,-~-;2—1. Sufficiently small values of rgy relative to ry.q, g9
suggest that al might be eliminated without an unacceptable increase in
the resulting minimum value Eq. (2-36) and (2-37) associated with the

truncated matrix.

Criterion 1I. Eliminations in accordance with Criterion I are made only
on the basis of the QR~-decomposition of A, and without regard for the
least-squares solutions that determine the quality of the desired
approximation. Criterion II takes those solutions into account. In
comparing the numbers Iriixil, i=1,ee+,2, suppose that the minimum

cccurs at some index ¢ < &; i.e.,

min
r Xx = r,.X, 2-40
I ag al i=1,000¢,8 “ ii 1” ( )

Recalling the nonincreasing property Eq. (2-7) of the diagonal elements

rjj, it follows from Eq. (2-40) that

IXOI - i=$f?o.,z {Ixil} (2-41)

BEquation (2-41) is an indication that column a9 is less important to
the least-squares approximation than the succeeding columns aj,
j=g+1,ee¢,8, Sufficiently small values of the minimum in Egq. (2-40)
relative to the other Iriixil values suggest that a® might be

eliminated from A. Similar considerations relating to the numbers
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lrjjyjl, j=1,e00,2, suggest the elimination of a (possibly different)
column aY¥ from A. Taken together, Criteria I and II may suggest up to

three distinct candidates for elimination from A.

2.2.2.2 The Elimination Sequence

Having specified the following parameters:

(1) an actuator candidate collection /;

(2) a regulation target collection & (e.g., {bLOSX, pLOSY}),

(3) a least~squares weighting ma‘rix W {uotational references
suppressed); and

(4) a least-squares minimum tolerance parameter tg > 0;

the elimination sequence can be defined.

Step 1: 1Initial Factorization. Set A(o) é A= [JJ] and compute a QR-

decomposition of al0), [Because of the assumption Eq. (2-33), the

R-matrix in the decomposition (cf. Eq. (2-3))

A(O)P(H (1 (1)

Q (2-42)

has the structure of Eq. (2-4c).)

Step 2: Initial Least-Squares Solutions. Denote A(1) 4 A(O)P(1) and

solve the least-squares problems of the form Egqs. (2-34) and (2-39),
respectively, for Al1), (It follows from Theorem 2-4 that there are
infinitely many least-squares solutions (cf. Eq. (2-16)), but all give
zero for the minimum values Eqs. (2-36) and (2-37) corresponding to
all)

Step 3: Initial Elimination. Truncate A(1) by retaining only its

first n columns; denote the result by a(2); i.e.,

.
« 820 ¢+ 3

P e
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where py is the permutation mapping of the indices {1,ee+,u} induced by

" the column permutation matrix p(1) of Step 2. [Because of the

assumption Eq. (2-33) and vhe structure of the matrix R(1), the first n
columns of a{1) are linearly independent. Uoreover, a(2) inherits

the QR-decomposition

A L ()

.

from Eq. (2-42) in which the R-matrix has the form of Eq. (2~-4a). There

are unique solutions x(2) and y(2) to the least-squares problems of

the form Eqs. (2-34) and (2-35), respectively, for A{2) (cf. Eq.

(2-17)), and the corresponding minimum values Eqs. (2-36) and (z~37) are

again zero.]}

(1); r(1)x(2)

Step 4: Secondary Elimination. Examine the numbers r '

nn ii i

(2)’ x(z)' (2)

(11,2 and y

Y.
. 33 73
Using either Criterion I or II, select a column, say the c¢-th, of a(2)

i=1,e00,n; and r s J=1,¢ee,n, associated with A

for elimination. Truncate A(2) by removing the g-:h column. (When the

‘criteria suggest more chan one column of A(2) for elimination , all

eliminations may be done in parallel. The result is a (generally

expanding) lattice of alternatives for elimination.)

Step 5: Secondary Factorization. Denote

A(3) A [apl(1)o . 91(0)~1E a91(0)+15 .

¢ eee s 3 oofan ]: (n-1) X n
and compute a QR~decomposition of A(3), [The columns of A(3) are
linearly independent, having been inherited from A(2), fThe QR-

decomposition

2=-21
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A{B)P(Z) (2)R(2)

Q

has an R-matrix with the structurs of Eg. (z-1b),]

(@) § ,(3),(2)

Step 6: Secondary Least-Squares Solutigns. Denote A nd

solve the least-squares problems of the form Eqs. (2-34) and (2-35),
respectively, for al4), (It foliows from Theorem 2-5 that each of the
two least-squares problems has a unique solution (cf. Eq. (2-18)), and
the minimum values corresponding to BEqs. (2-36) and {2~37), respectively,

are generally.nonzero (cf. Eq. (2-19)).]

Step 7: Subsequent Eliminations. Repeat Steps 4 through 6,

successively, applying Step 4 of the current cycle to the results of Step

6 for the preceding cycle.

Step 8: Termination. 2ssume that the preceding eliminations have

reduced the initial collection &/ to the subcollection &' and that each
elimination (say to ") from ' via the application of Steps 4 through
6 leads to corresponding minimum values (cf. Eqs. (2-36), (2-37)) such
that either

J . (a", b*O%% 5 ¢ (2-43)

r

R U e (2-44)

where A" 4 [JJ"]. Terminate the elimination sequence;.s' is a minimal

selection,

‘The actual numerical implementation of the termination tests Bgs.
(2~43) and (2~44) is modified slightly when very small residual vectors
in the least-squares solutions are required, as in the applications :0 be

prasented subsequently. The test Eq. (2-43) has thz form
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50 0.2 1, (2-45)

where p = (py,e¢,py)T is the residual vector bLOSK.p'x" at a
least-squares solution x" corresponding to A". The actual computation of
the squares of small numbers in Eq. (2-45) in undesirsble. 1In view of
the equivalence of all norms on EB, and in particular, from Jensen's -

inequality [ﬁef. 2-19]:

1/2

A max’ . ) n 2 n
L PP (Y S S O T b B M 1 R

the test Eq. (2-45) is equivalent to the condition

max

i=1,e00,n Ipil > T (2-46)

lpl°°

for appropriately chosen tq. Similar remarks apply to the test Eq.
(2-44). 1In addition to being simpler and subject to less computational
error, Eq. (2-46) also provides information (not provided by Eq. (2-45))
as to which of the modal coordinates is associated with the unacceptable
approximation.

It should be observed that the elimination sequence has embedded
within it a considerable degree of design flexibility that goes far
beyond the choice of the parameters ., B, W, and 1g. Step 3
accomplishes a (generally quite large) reduction in the number of
actuator candidates from y (cf. Eqe. (2-32)) to n. The candidates that
are retained in Step 3 are determined by the column permutation p(1)
generated in Step 1. That permutation in turn is the result of
successive applications of the Householder Lemma 2-2 that are performed
in Step 1 in order to achieve the diagonal dominance property Eq. (2-6)
in the factorization of Eq. (2-42). In general, P{') is not unique in
this regard., The implications of this lack of uniqueness have yet to be

fully explored,
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2.3 Applications with ACOSS Model No. 2

In the description of the scientific experiment for active control
synthesis with generic structural models [Ref. 2-4), four principal
elements of the synthesis process are identified as variables of the
experiment:

(1) Design of the basic structure to ke controlled;

(2) Selection of reduced-order models;

(3) Selection of active transducers; and

(4) Determination of the controller feedback structure.

For the work summarized in the present report, the first and last of
these elements are fixed in order to focus on the other two, especially

active transducer selection.

The first element, basic structural design, is a significant
variable in relation to the generic structural models because of the many
modifications to original designs, 1In particular, the original
structural design for ACOSS Model No. 2 [Ref., 2-20] has undergone three
major revisions (Ref. 2-21]. The choice of Revision 1 fo:.' the work
reported here represents a compromise which retains improvements on the
original design in the mcdeling of the attachments for certain rigid-
body elements, while avoiding the extremes of very high inherent

flexibility (Revision 3) or very high inherent stiffness (Revision 4).

The last element, contrnller feedback structure determination, is
held fixed for the work reported here in order to avoid obscuring th:
view of whatever improvements in performance may be attributable to
judicious selections of reduced-order models and of active transduce:s,
The choice of the disturbance-rejection control feedback structure [Rel,
2-22; Sec. 3.6), which assumes full knowledge of the statistics of the
disturbance, provides an upper bound for control system performance.

The disturbance to be accommodated is assumed to be an aperiodic

disturbance with a constant power spectral density at frequencies from 0
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to 5 Hz, applied in a fixed direction at nodes no. 37 ard 46 of the
structural model. Full details of the disturbance definition and .

relevant assumptions have been given previously [(Ref., 2-5, Sec. 2].

To assist in the selection of reduced-order models, criteria for
ranking the structural modes are commonly used [e.g., Ref, 2-2], 1In the
present context, ranking of modes is done by comparing open-loop modal
responses of the regulated variable tc the disturbance input; i.e., the
root-mean-square ~-kMS) value of the response of the two-input, single-
output system between the disturbance input and, the contribution of each
mode to the line-of-sight error (cf. Egs. (2-28) and (2-30)). The
precise formulation has been given previously (Ref. 2-5, Sec. 5]. The
resultant ranking of flexible-body mecdes for the chosen structural model
(Revision 1) is shown in Table 2-1. An inevitable feature of any such
ranking procedure is that, in general, a selected group G of
consecutively-ranked modes is not contiquous in frequency; i.e., there
exist modes not in G which are interlaced in frequency with modes in G.
For example, the first eleven modes according to the ranking of Table 2-i
are interlaced in frequency with seven modes (11, 15, 17-21) of
considerably lower rank. The interlacing can be seen clearly in the
frequency listing of Table 2-2, A reduced-order model having this

property is said to he interlaced; otherwise i't is called contiguous.

As indicated in the preceding section, the objective of the active
transducer selection algorithm (roughly speaking) is to choose
relatively small number of those actuators that are expected to have
relatively high effectiveness in achieving the desired regulation of
line~-of-sight error. It therefore seems desirable that the selection
process lead to a rich lattice of alternatives (Step 4) for elimination
from the initial class of actuator candidates. This qualitative property
is termed richness. It is certainly desirable that upon termination of
the elimination sequence, the number of retained actuators is
substantially smaller than the number of modes to be controlled.

Denoting by p the number of actuators retained in a minimal selection,

the level of vednction
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A sA(.ﬁl,ro) n-p ) (2-47)

is an important quantitative measure of the effectiveness of the
selection algorithm. It is obvious that the level of reduction should
depend on the tolerance parameter 1g; it also turns out to be a very

strong function of the class 4/ of actuator candidates chesen.

Principal observations with respect to the performance of the
selection algorithm that have emerged from work to date are the

following:

(1) Level of reduction increases with augmented richness;
(2) Richness is augmented when:
(a) 1Interlaced reduced-order-design models for which active
transducer selection is tailored are made contiguous;
(b} ‘The ciass of actua:or candidates is enlarged;
{(c) Suitable restrictions are imposed upon a sufficiently
large actuator candidate class;
(3) Minimal selections which realize the same level of recuction

are not necessarily unique.

Four design examples with ACOSS Model No. 2 are described next.
These examples demonstrate the observations noted and show in addition
some of the design flexibility that is available when relatively high

levels of redaction are achievable.

2.3.1 Specifications for Desiyn Examples

Considerations which apply to each of the four examples are the
following:
(1) The basic structural design is Revision 1 of ACOSS Model
No. 2 [Ref. 2-21] with 2 = diag(0.00l) in Eq. (2-28);
{2) A broadband disturbance [Ref. 2-5, Sec. 2] is applied to
nodes no. 37 and 46 of the structure, assuming constant

direction;
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(3) Selection of modes for inclusion in reducedfdrder models for
controller design is assisted by the distyrbance response
ranking of Table 2-1;

(4) The regulation target collection & consists of the elements
defined by Eq. (2-31) (whose dimension is that of the design
model);

(5) ‘e least-squares weigﬁting matrix W has the form: -

W o= diag(wi): nxn (2-48)

where wj is the RMS LOS-error disturbance response
associated with mode nj of the reduced-order design
model as listed in Table 2-1;

(6) The least-squares minimum tolerance parameter is

T, = 1078 (2-49)

The four examples are distinguished by differing specifications on
the reduced-order design model and actuator candidate class /. The
specifications are summarized in Table 2-3 and are discussed briefly

below.

Reduced~order design model. In Example A, the reduced-order design model

consists only of the modes ranked 1 through 11 in Table 2-1; it is
interlaced. In all the succeeding examples, this design model is made
contiguous ly incorporating thg formerly excluded modes between mode 7
anéd mode 24. However, mode 19 -- a solar panel torsion mode ~- is
excluded from the numerical implementation. The associated entry in the
least-squares weighting matrix W (c¢cf. Eq. (2-48)) is extremely small
(10-22) causing the resulting weighting matrix to be poorly conditioned

numarically with respect to inversion. ‘The small weighting is a

2=-27
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reflection of the very low influence of this mode (ranking at most 147

out of.156) on any of the modeled node~-connecting elements.

Actvator candidate class,”/ . In Examples A and B, only axial member

actuators (137 total) on node-connecting elements of the finite~element
b model are allowed. In Example C, the class of candidates is expanded to

include translation actuators at all nodes, an-aggregate of 311. 1In

Example D, certain nodal translation actuators are disallowed; in
particular, these are the z-translation actuators on equimment section
nodes (6 total) and both y-translation and z-translation actuators on

interior solar panel nodes (16 total).

2.3.2 Selection Results

Active transducer selection results with Examples A through D are
summarized in Table 2-3; visual representations are given in Figures 2-7

through 2-9. The results are discussed briefly.

Example A yields somewhat unsatisfactory results from the
viewpoint of design flexibility in actuator selection (A=1). Only two
alternatives are available (Step 4) for removing an actuator from the
candidates remaining after completion of the initial elimination (Step
3). Both alternatives lead ts least-squares solutions which exceed the
specified termination tolerance (Eq. (2-49)). The least undesirable of
the two elimination alternatives leads to the minimal selection shown in
Fig. 2-1. 1t can be seen that the measure of the residual vector in Eq.

* (2-46) slightly exceeds the specified tolerance tg in the regui.ted
varible associated with bLOSX (cf. Eq. (2-31)). Inclusion of the
member connecting one solar panel (at node 52) to the equipment section
(at node 43) is somewhat surprising, since in a static comparison of
influence upon each of the modes in the design model (intra-row
comparison of entries in the ¢TBp matrix of Eq. (2-28)), this member

ranks no higher than 91st of all 137 members.
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Example B yields a somewhat richer lattice of elimination
aléernatives and a substantial improvement of the level of reducﬁion in
the minimal selection. This is attributable entirely £o having
(minimally) augmented the reduced~order design model to make it
contiguous, as Table 2-3 indicates. The minimal selection is shown in

F:Lg. -2,

Example C yield. only a slightly richer lattice of elimination
alternatives, but a quite substantial improvement in the level of
reduction in the minimal selection, in comparison to example B. This is
attributable to having enlarged the class of actuator candidates ./ to
include translation actuators at nodes, as Table 2-3 indicates. This
explains the presence of 4 in Eq. (2-47). The minimal selection is
shown in Figure 2-3. It is noteworthy, but not surprising, that no axial
actuators appear in *he minimal selection even though the candidate class
includes them all. 1In fact, all axial candidates are removed in the

initial elimination (Step 3).

Example D provides somewhat surprising and quite satisfying
results. The lattice of elimination alternatives is extremely rich and
leads to an even more substantiql improvement in the level of reduction
in minimal selections, of which there are two in this case. A portion of
the branch cf the elimination lattice that leads to the minimal
selections is shown in Fig. 2-4. The label "TX-34" indicates the removal
of the translational (T) actuation in the x-coordinate (X) body-axis
direction at node 34, other labels having an analogous interpretation.
Parentheses indicate eliminations along a portion of the branch that do
not lead to one of the minimal selections. Preselections P-17, D-14, and
D-11 are shown in Pigs. 2-5 through 2-7, respectively, and minimal
selections D-9A and D-9B are shown in Figs. 2-8 and 2-9, respectively.
Taken together, Figs. 2-%1 through 2-9 show quite clearly how the
elimination sequence (beginning with Step 4) leads systematically to
minimal selections. The steady increase in the measure of Eg. (2-46) for

the residual vectors associated with bLOSX ang pLOSY (gq, (2-31)),
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respectively, as the elimination seaquence proceeds may be noted,
consistent with the expectation of Theorem 2-6 (Eq. (2-27)). 1In this
example, the number of actuators in a minimal selectioh is only half the
number of controlled modes. This implies a very desirable degree of
design flexibility is available (and may be beneficial) by employing
intermediate (ancestral) selections such as D-14 or D-11 that lie along
the path to a minimal selection, A full explanation of how the
restriction imposed in proceeding to example D leads to the improvements
observed is not yet available. However it does provide a substantiation
of the design flexibility embedded within the elimination sequence that
is mentioned at the end of Section 2.2.

Minimal selections from Examples B, C, and L are employed in the
design of optimal linear-quadratic disturbance~rejection controllers as
reported subsequently in Section 3. Each of the designs is evaluated in
the presence of a fam@ly of contiguous reduced-order evaluation models
{cf. Table 2-2) with increasing ranges of frequency.- Stability well
Leyond the frequency range (5 Hz) of the design model is demonstrated in

each case.
2.4 Summary

Work accomplished to date in connection with the scientific
experiment for active control synthesis with broadband disturbances has
led to substantial insight into a relatively new and systematic approach
to active transducer selection. This process leads to selections which
at the same time have relatively high influence upon variables to be
regulated in the control problem and require substantially fewer
actuators than controlled modes. The selection process itself, as well
as the selections it produces, exhibit potentially beneficial design
flexibility. Linear-quadratic disturbance-rejection controllers
employing transducer selections generated by this process (cf. Sec. 3)
demonstrate stability in the presence of residual modes over a frequency

range substantially beyond that of the design modes. These
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demonstrations are significant in that stability—gnhancing adjustments of
the controller feedback structure have been deliberately postponed in
order to focus on the connections between the selection of reduced-order
models and active transducers on the one hand and closed-loop stability

and performance on the other hand.

Subsequent work in regard to active transducer selection will
include:
(1) Expansion of the actuator candidate class to include
rotational actuators;
{2) Deeper investigation of the design flexibility inherent in
the selection process; and
(3) Examination of the interaction between the selection of

reduced-order models and the selection of active transducers.

2.5 Agggndix

Theorem 2-6 is an immediate consequence of the following two
results.

Proposition 2-7 (Column Rearrangements). The minimum value defined by

Eq. (2~14) is unchanged by an arbitrary column permutation P: mxm of A;

i.e.,
"‘;“ 32 'x ; ap, b) = “‘;" J(x; A, b) (2-50)
Proof. The identity

(P '%; AP, b) = Ib=(AP)(P ' x)12 = J(x; A, b) (2-51)
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holds for all n-vectors x. It follaws that for each minimum, say xg
(cf. Eq. (2-13)), of J(¢; A, b), P~1xg is a minimum of J(+; AP, b),
and conversely. The desired coincidence of minimum valucs Eq. (2~50)

follows from Eq. (2-51) by this correspondence of minimum points. O

Proposition 2-8 (Terminal Removals). Let p be an integer, 1 S.L < m=1,

The minimum value defined by Eq. (2-14) does rot decrease if columns

p+1,e¢¢,m are removed from A; i.e.,

A min min .
mn - xeE" J(x; A, b) < yng J(y; A

e

JP

J b) .
min

100.97

where Aleeep denotes the submatrix consisting of the first p columns

of a.

Proof. Integers k, m, and n are defined as in Eq. (2-1). 1In view of
Proposition 2-7, there is no loss of generality in assuming.that the
leading k columns are linearly independent. 1Two cases are considered,
depending on whether Eq. (2-1) represents an equality or a strict

inequality.

Case A: k =min{n,m}. If n < m, then the result is trivial: Bg. (2-15)

is true, and therefore

Thus, consider that m < n. The QR-decomposition of A (cf. Theorem 2-1)

has the structure

A = (R = [Q1 : Q2] - (2-52)
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where in this case the column permutation P is taken to be the identity
matrix. The truncated matrix A1.,,p inherits a QR-decomposition from

Eq. (2-52) by a corresponding truncation of R:

where the matrix Q is the same as in Eq. {2-52) but is repartitioned to
> . be compatible with (R1)1.,.p: pxps Denoting by qj the j-th column

of Q, it can be seen that

Using Eq. (2-19) with both Q2 and Q2. it follows that:

P _ yo*,2 . vk
Jin = 12, b1 Limp

min I(qj)*b‘z * an*blz 24

min

Case B: k < min {n,m}. The proof for this case uses the same approach

as in Case A, except that Eg. (2-52) is replaced by the decomposition for

the rank-deficient case that is a simple extension of Theorem 2-1:

The details are omitted.
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Table 2-2. Reduced-order models in terms of open-loop
undamped characteristic frequencies:
© Interlaced design
® Contiguous design

# Contiguous evaluation

MODE EIGENVALUE REAL EIGENVALUES
» NO. w.2 wl wi
! {rad/s) (Hz)
1l 0.0 0.0 0.0
4 0.0 6.0 0.0
. 3 0.0 0.0 0.0
9 0.0 0.0 0.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0 0 H
1 o) o n 8.6504572E-01 9.300899E-01 1.480284E-01
8 (o] L} a 3.148905E+00 1.774515E+00 2.824228E-01
9? (o] [ ] 4.009007E+00 2.002251E+00 3.186681E-01
10 (o] [ ] | 4.434997E+00 2.105943E+00 3.351712€-01
11 ® ] 8.6384082E+00 2.939130E400 4,677770E-01
12 o [} [ ] 1.344033E+01 3.666106E+00 5.834789E-0)
13 [o} [ n 1.420241E+01 3.773911E400 6.006367€E~01
14 o ® | | 1.790326E+01 4.231224E400 6.7364203€E-01
15 L a 3.639226E+01 6,.032599E+0C 9.601181E-01}
16 (o] [ ] a 4.708934E+0L 6.862167E+00 1.092148E+00
17 ] - ] 1.334769E+02 1.155322€E+01 1,838752E+00
18 L} n 1.341718E+02 1.158326E+01 1.843533E+400
19 ® ] 1.408955E+02 1,186994E+01 1.889159€+00
. 20 L] ] 1.564087E402 1.250623E401 1.990428E+400
21 L a 1.675513E+02 1.294416E+01 2.060127E+00
22 ] L] a 2.372882€E+402 1.540416E+01 2.451648E4+00
23 o] L | | 2.412209€402 1.553129E+0) 2.471881E+00
24 o} [ i ] 4,149673E4+02 2.037074E+01 3,242105E400 5 Hz
25 | ] 1.051814E+403 3.243167E4+01 5.1616460E+400
26 [} 1.055404E+03 3.248690E4+01 5,170064E+00
27 [ ] 2.469482E+03 4.949223E+01 7.876933E4+00
28 | ] 2.474952E+03 4,974889E+01 7.917781E+00
29 | ] 3.037863E+03 8.5114682E401 8.772115E+00
30 | ] 3.040462E4+03 5.516038E40]) 8,775864E4+00
3 ] 3.083413E+03 5.552849E+01 8.837633E400
32 ] 3.183598E+03 5.642339E+01 8.900061E+00
33 n 3.653264E403 A, 044223E4+01 9.619679£+400 10 Hz
34 [ ] 4.265980E+403 6.5314497E+40), 1.039512E+01
35 ] 5.379633E403 7.334598E401 1,167338E+M,
36 L] 5.939781E+03 7.706998E401 1.226607E+0)
37 n 7.075340E+03 . 8.411504E+01 1.338732E+01
38 | ] 7.319027E+03 8.555132£4+01 1.361592E+01
39 L] 8.614004E4+03 9.2811646E+01 1,477143E+401 15 H.Z
40 1.065900E+04 1.032424E402 1.643153€401
41 3.713255E+064 1.308919E+02 2.083200E+01
. 12 1.874883E4+06 1,369264E+02 2.179250E+01
43 1.883882E+04 1.372544E+02 2.1864474E+01
44 1.8684647E+04 1.3720824E+402 2.184917€4+01
L1 1.884669E+04 1.372832€E402 2.184930E+0)
46 1.089893E+04 1.374734E202 2.187956E+01
47 2.227858E4+04 1.492601E4+52 2.375548E401
s (1] 2.364327E404 1.537637E+02 2.447224E40)
49 2.455703E+04 1.567068E402 2.494066E401
50 2.643350E+04 1.625838E402 2.587601E+01
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Minimal selection, example B.
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Minimal selection, example C.
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Figure 2-3.
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Preselection D-17, example D,
2-43

Figure 2-5.




n=18
=289

m = 14

flotl,,

LOSX: 1E-10
LOSY: S5E-10
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SECTION 3

PROGRESS ON SYNTHESIS OF ACTIVE CONTROL FOR BROADBAND
DISTURBANCE ACCOMMODATION

PART 2: CONTROL SYSTEM DESIGN AND EVALUATION

3.1 Introduction

The philosophy of our scientific experiment for active control
design with ACOSS Model No. 2 was reviewed in the previous section. Now
we make use of the 18 mode (modes 7-24) design model from Revision 1 of

Model No. 2, and let the several actuator and sensor placements be

variables in the experiment.

This section will review the control system design philosophy
which remains fixed while working with the various actuator and sensor
selecticns. After the design results are examined, some changes in the
controller cdesign will be suggested for the future part of the
experiment.

3.2 Control System Design Philosophy

For these designs we have employed the Linear-Quadratic-Gaussian
(LQG) methodology, where a model of the disturbance has been augmented
with the state equations of the structure. Such a disturbance model uses
knowledge of the point of application on the structure and power spectral
density of the incoming disturbances. The resulting controller is
frequently referred to as a disturbance rejection controller, and has

been treated in References 3-1 (Section 4) and 3-2.




" To clarify some of the values used here and in the designs of
Reference 3-1, we examine the transfer function model for the power
spectral density function corresponding to the incoming disturbances as

given by Eg. (2-1) of Reference 3-1 (Section 2):

¢ 2
Sex(8) = 2 2
w =S
c
where
G = 40 N2 sec
w = 2nf
c c
f = 5 Hz
c

The corresponding state space representation is (cf. Eq. (2-28))

v = Bpup

where up is the solution of
: + B
% = A w”

In particular, v is the disturbance acting on the structure, and Bp,
the influence matrix of the disturbances, has been discussed in Section 2

of Reference 3-1. Here

where Ay = Ay = ~we = =31.4159, and




wl

0 bw2

where by = bys = VG we = 198.692. The above terms are discussed
in Section 4 of Reference 3-1, but without noting the numerical values.
Also the covariance matrix of the fictitious white noise input vector

-

is
Cov(w wT) = Ipya

Note that the power spectral density function has a bandwidth of S
Hz and has a zero frequency value of 40 N2/Hz if it is considered to be
a two-sided function of frequency, and has a zero frequency value of 80

N2/Hz if it is considered to be a one-sided function of frequency.

Among the controller designs presented in this section for the
four actuator/sensor placements, the only parameters that have been
altered are the diagonal terms of the 3x3 Q matrix in the performance

index for the LQ regulator where,

q1 0 0
Q = 0 q, 0
0 ] q,

and qq weights the line-of-sight displacements in the x direction

(LOSX), qo weights the line-of-sight displacements in the y direction

(LOSY), and q3 weights the defocus displacements (2). In particular,
the diagonal terms of the Q matrix are adjusted to ensure that the stace
feedback portion of each LQG design will meet the line-~of-sight (LOS)

specifications. These LOS specifications are taken to be:




v 1/2 »
rosxk = [ § (vi - ¥1)]/“ < 0,05 p-radians
i=1
, b /2 .
osy = [ § (vi - v2)]/“ < 0.05 y-radians
i=1
o 1/2 -3
Defocus = 2 = [ Z (Ul - Y3)] < 0.025 x 10 me ters
i=t

where Ui-Yj represents the mean square walue at one of the three line-
of-sight outputs resulting from the i~th disturbance. For our designs
there are two identical disturbances, one at node 37 and one at node 46

of the model, so m is two in the above LOS specifications.

For all designs the control weighting matrix, R, in the LQ
performance: index was an identity matrix of appropriate dimension and its

scalar factor, pgp, was always 1x10-17,

The design of the optimal state estimator is dual to that of the
LQ regulator and the covariance of the sensor noise term, 6, was taken to
be:

cov(e eT) = ol

where po = 1x10'17, and m is the number of sensor outputs, as in the

designs of Section 4 of Reference 3-1.

The state estimator is connected to the constant LQ gain to form a
compensator which, when evaluated with the 18 mode design model of the
structure, is guaranteed to yield a stable closed-loop system. Note that

Model No. 2 has 132 elastic modes of higher frequency than the 18 modes




used in our design. One goal shéuld be to have a control system robust
enough to remain stable in the presence of these 132 high frequency
modes, realizing that degradation in LOS performance wéuld occur., Our
designs have not achieved that goal at this point in the experiment, but

the results, discussed in the next section, are encouraging.

» 3.3 Controller Results

The results of the control system designs with four of the
actuator/sensor selections described in Section 2 are summarized in Table
3-1. The diagonal elements of the Q matrices used in the LQ designs, and
the resulting line-of-sight results for the full-state feedback case
under the column headed by LQ are shown. WNote that the LQ designs with
translational actuators/sensors required much lower weighting of the
controlled variables (line-of-sight displacements) in the performance
index than did the design with axial members, while achieving

approximately the same LOS performance.

Not reflected in the'table are the design iterations on the Q
matrix for each particular actuator/sensor selection that led to
acceptable LOS performance. These jiterations showed that each 2 result
was relatively insensitive to changes in its own weighting or the
weighting of the other terms. However, an order of magnitude change in
the weighting for LOSX or LOSY, namely qq or q3, from those shown in
the table yielded approximately an order of magnitude change in the LOSX

or LOSY value.

Recalling that actuator/sensor selection D-9A was a subset of
selection D-14, one can note only a slight degradation in the LOS

responses between these two for the LQ design,

The original 18 mode LQ design for selection D=9A encountered
numerical difficulties when evaluating the poles of its state-feedback
design., These numerical difficulties were alleviated when mode 19, which
has extremely low control and output influences, waz deleted from ithe

design process. Mode 19 was of course included in the esvaluatior models.

3-5




Going to the final column of Table 3—5, one can see that
actuator/sensor selection C yielded the largest number of modes in a
stable evaluation. The addition of one mode beyond an& of the stable
evaluations shown in the last column gave an unstable system. WNote that
selection D-9A, which was a subset of selection D-14, had a much lower
stable evaluation model than D=-14. 1In general, taking into account the
number of actuators/sensors in each selection, the translational members
yielded control systems with superior stability propertiec compared to

the design using axial members.,

For the two designs giving the greatest envelope of stability, the
LOS results were computed for the LQG compensator evaluated with the 18
mode design model and with a 30 mode evaluation model (wodes 7-36).
While slight degradation occurred in the L 3X and LOSY results for the
LQG compensator evaluated with 18 modes compared to the full-state
feedback results in the LQ column, significant degradation in LOS did
occur when the LQG compensator was evaluated with modes 7-36.

3.4 Future Controller Designs

As part of the scientific experiment explained in Section 2,
changes will be made in the control system design with an eye toward
improving the stability results. Specifically, the choice of state and
control weighting matrices in the LQ performance index could be altered
to lower the multivariable bandwidth. 1In addition, other frequency
shaping techniques may have to be used to ensure adequate high frequency
attenuation in the LQ design. Hopefully, in addition, a reasonable
disturbance rejection controller design can be found which relies less on
explicit knowledge of the disturbances' structural locations and
stochastic properties: If a linear quadratic regulator can be designed
with some of the improved properties mentioned above, the estimator may
have to be designed using "full-state recovery techniques” [Ref. 3-3] to
preserve those good features, which otherwise are not guaranteed to hold

when an estimator of general design is used in the compensator.
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245 Conclusion

This section has illustrated the LQG disturbance reijection .
controller results for four actuator and sensor selections used on ACOSS
Model No. 2. These selections were the variébles under investigation in
the experiment referred tc in Section 2. fThe results indicated that
translational actuators and sensors gave superior line-of-sight and
stability results when compared to axial actuators and sensors. Changes
in the controller design philosophy will be made to improve the stability

results in the future part of this experiment.
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SECTION 4

SAMPLED DATA CONTROL OF FLEXIBLE STRUCTURES
USING NON-COLOCATED VELOCITY FEEDBACK

4.1 ) Ooverview
A framework is developed for sampled data control of flexible
structures, in terms of discrete time recirsive equations in second order
form. This framework is used to analyze the sampled data control scheme
where the loop is closed using constant gain output velocity feedback.
It is well known thai the closed loop is stable if colocated velocity
feedback with symmetric and positive definite feedback gain is used, so
- long as the sampling rate is sufficiently high. 1In this section it is
shown that the closed loop can be stabilized using sampled data output
velocity feedback for arbitrary sampling rate; our approach is to make
use of appropriately defined non-colcocated velocity feedback. This
approach leads to explicit stability conditions in terms of the feedback

gain and the sampling rate.

4.2 Models for Sampled Data Controlled Flexible Structures

A sampled data controlled flexible structure can be defined as a
distributed parameter system, where the structure input is the output of
an ideal zero order hold and the structure output is sampled. Althéugh
distributed parameter models typically involve infinite dimensional

variables, our analysis is based on the finite dimensional model

MJ + Xqg = Bu (4-1)




SRR

For simplicity in the subsequent development no structural damping is
included. The structural displacement vector g = (qi,*+*,dy) and the
force input vector u = (uq,%e¢,u;). The mass matrix M and the
structural stiffness matrix K are assumed symmetric and positive

definite. Throughout, we consider velocity output of the form

Yy = Cq (4-2)

where the velocity output vector vy = (yq,¢*¢,yy). The input
influence matrix B and output influence matrix C are assured to be

dimensionless.

The structure input u is defined in terms of the input sequence

uy by the ideal zero order hold relation

u(t) = u , KT <t <KMT (4-3)

The output sequence yyx is defined in terms of the structure output y by

the ideal sampling relation

Y = y(kT)

The fixed value T > 0 is the constant sampling time. This open loop
sampled data controlled structure can be viewed as a discrete time system

with input sequence uy and output sequence yy, where k = 0,1, s,

Let ¢ be a nxn nonsingular modal matrix and let Q2 be a nxn

diagonal modal frequency matrix (Ref. 4-1] satisfying
T 2

eMe = I, o'k = & = diag(ul,eer,u)

Introduce the coordinate change




q = ¢én

so that Eqs. (4-1), (4-2) can be written as

n + an = QTBu (4-4)

It is an easy task to solve the vector equation Eq. (4-4), using Eq.

(4-3), to obtain

Vi & -2, _ T .
My = (cosQT)nk + \sumT)nk + 0 (I - cosqQT) ¢ Buk (4-5)

ﬁk+1 = -n(sinﬂT)nk + (cosn’r)?\k + 9-1(sinQT)®TBuk (4-6)

where Mo = n({kT), ﬁk = ﬁ(kT), and sin@T = diag(sin(w‘T),o--,sin(wnT)),
cosQT = diag(cos(wyT)},»+s,cos{wyT)) [Ref. 4-~2].

Although the first order recursive equations Egs. (4-5), (4-6)
could be uced, it is more convenient for our purposes to make use of a

. . » .
second order recursive equation in nk alone

n”‘(sinm)o”’a(uk -u ) (4=7)

- 2(cosQT)nk + L K1

*
nk+1

Y = Cco Ny (4-8)

L T gy SV A

4-3




r

The modal equations Egqs. (4-7), (4-8) form the basis for our subsequent
analysis. It is natural to make use of the recursive équation for ﬁk

alone in considering velocity feedback systems.

It should be noted that relations Egs. (4-7), (4-8) involve no

numerical approximation; they are valid for any sampling time T > 0.

4.3 Constant Gain Velocity Feedback

Constant gain output velocity feedback has been studied
extensively for analog controlled structures. Our interest is in use of
constant gain output velocity feedback for sampled data controlled

structures.

Consider the closed loop sampled data controlled structure defined

by Eqs. (4-~7) and (4-8), using the control input sequence

u, = -Gyk (4-9)

where G is a constant mxm feedback gain matrix. Substituting Eq. (4~9)

into -Eqs. (4~7) and(4-8), a closed loop recursive equation is obtained

. - . T .
Meps [2cosﬂT - Q (singm)¢ BGCQ]nk
1 T o
+ [1 - o (singm e BaCo]n, = O (4-10)
The closed loop characteristic eq ' -’ ,on can be written as
o ~1, . T
d(r,2) = Je- 1 - (2c0sQT - Q (sinQT)¢ BGCo)z
<1 - 2" (singm)e’BGCO)] = O



The objective of constant gain velocity feedback control is to make the
closed loop as described by Eq. (4~10) geometrically stable, i.e., to

make the closed loop characteristic zeros lie inside the unit disk.

We use Eg., (4-10) as the basis for our subsequent analysis of the
closed loop. If sinQT is nonsingqular, the following implications hold:

if ﬁk+0 as k+=, then necessarily uk+0 as k»+® and nk+0 as k »»;

consequently ik+0 and xk+0 as koo,

4.4 Colocated Velocity Feedback

Recall the following results for constant gain output velocity
analog feedback control where u = -Gy, If colocated force actuators and
velocity sensors are selected so that C = BT, then the closed loop
analog controlled structure is asymptotically stable if G is any
symmetric, positive definite matrix, and if a certain controllability
assumption is satisfied [Refs. 4-3, 4-4, 4-5). Moreover, this result
does not depend on the particular values of the modal frequencies and

modal functions.

We first mention a rather obvious result that if the sampled ¢:ta
feedback control is chosen according to the analog feedback theory, then
the closed loop is stable for sufficiently small sampling time, The
brief proof is included for completeness; it also serves as an

introduction to our subsequent development.

Theorem 4-1. Assume that
{a) ¢ = BT,
(b) the matrix pair (Q2, ¢TB) is completely controllable, and
(c) G is symmetric and positive definite.

Then the closed loop equation Eq. (4-10) is geometrically stable for

sufficiently small sampling time T > O.




Proof. Consider the associated polynomial

-1 T Tzw2
p(T,w) = det [2(1 + cosQT - 9 (sinQT)d EGC&%—Z—-
+ 207" (singm) o"BaCe X + 2(1 - cosqm) ] (4-11)

By assumption the polynomial defined by

lim p(T,w)-lE
40 T

has all zeros in the left~half-plane; hence there is a number T > 0 such
that p(T,w) has all its zeros in the left-half-plane for 0 < T < T.

Using the bilinear transformation
(4-12)

it follows that the zeros of d(T,z) are necessarily inside the disk;

hence Eq. (4-10) is stable. [J

This result has limited application since there is no indication
of the range of values of the sampling times, relative to the feedback
gain matrix, required for closed loop stability. In Reference 4-6,
conditions are developed which, in principle, characterize a range of
values of the sampling time for which the closed loop system is stable.
Unfortunately, the conditions depend on an a priori computable bound on
an exponential matrix; computation of such a bound, in analytical terms,
is not considered in Reference 4-6, Of course one could perform a
numerical search, based on the characteristic polynomial 4(T,z) (or

equivalently p(T,w)) for a specific case, to determine a range of values

b6




of the sampling time for which the closed loop is stable. However, for
the case of colocated velocity feedback there are no known explicit
conditions, in terms of the sampling time and feedback gain matrix, which

guarantee stability of the closed loop sampled data system.

4.5 Non-colocated Velocity Feedback

We now present the main result-of the papér: a set of explicit
conditions on the sampling time and feedback gain matrix for which the
closed loop sampled data controlled structure is stable. The key idea is
to suitably modify the assumption of colocated force actuators and

velocity sensors.

Theorem 4-2., Assume that sinQT is nonsingular and
(a) C = B o(singm)@ T 16,

(b) the matrix pair .((I + cosQT]~'{I - cosqT), ¢TB) is
completely controllable,
(c) G is symmetric and positive definite, and
(@) I + cosQT - T¢TcTGCe is positive definite.
Then the closed loop equation Eq. (4-10) is geometrically stable.

Proof. The assumnptions can be shown to guarantee that the zeros of
p(T,w) defined in Eq. (4-11) are in the left-half-plane. The bilinear
transformation defined in Eq. (4-12) quarantees that the zeros of d(T,z)

are necessarily inside the unit disk. Hence Eq. (4-10) is stable. O

Informally, note that as the sampling time satisfies T+0 that from
condition (a), c+BT, and that conditions (b), (c), (d) of Theorem 4-~2
tend toward conditions (b), (c) of Theorem 4-1. But for T > O the extra
requirement of condition (d) of Theorem 4-2 is imposed on the feedback
gain; this imposes a limit on the "size" of the gain matrix. Condition
(a) of Theorem 4-2 implies that the output velocity feedback given by
Eq. (4-2) be selected in a specific way. Clearly the actuators and

sensors would generally not be colocated.,




Conditions (a) and (d) of Theorem 4-2 do depend on explicit

2y

" \ st Nt

. knowledge of the modal frequencies and modal functions and they depend on
the particular value of the sampling time. Unlike the corresponding
analog case, the closed loop, with assumptions of Theorem 4-2 satisfied,
is not robust to arbitrary uncertainties in the modal data and to modal

truncation. However, an arbitrary structure can be stabilized using

sampled data velocity feedback with arbitrary sampling time; the
suggested approach depends on a proper choice of force actuator and
velocity sensor locations so that condition (a) of Theorem 4-2 is

satisfied.

4.6 An Example

As a simple example consider the scalar equations in modal

coordinate form with one actuator input

*e 2

n o +tum =1 ,
b = u

Ny * W,on,

2 2
where w1 # wz.

Based on Theorem 4-1, the sampled data feedback control
u(t) = -GN (kD) + (kD) ], KT ¢ € < kmeT,

with G > 0 and wiT # nm, n=0,1,++¢; i=1,2 stabilizes the closed loop
for T > 0 sufficiently small. Even in this simple case analytical
conditions on the range of values of the sampling time and the feedback

gain for wi.ich the closed loop system is stable are exceedingly

complicated, Evidently a proper choice of values for the feedback gain

and the sampling time would require use of numerical search procedures,




Now consider the sampled data control

. sinw1T . sianT .
u(t) = -G[( —;1—5-—- ) n1(kT) + (_m—z-'i'_ ) nz(kT)], KT < t < kT+T,

where the output is chosen so that condition (a) of Theorem 4-2 is
satisfied; clearly such vélocity sensors would not be colocated with the
specified force actuators. On the basis of Theorem 4-2.the closed loop
is guaranfeed to be stable if w3T # nw, n=0,1,0e¢; i=1,2; and if the

relatively simple analytical conditions

(miT)2(1 + coswiT)
0 < GT < > s 1=1,2
(sinwiT)

2 2
0 ¢ GT < (m1T) (sz) (1 + cosm1T)(1 + cossz)

(sz)2(1 + cossz)(Sinm1T)2 + (w1T)2(1 + cosml'l‘)(sinwz'r)2

are satisfied. Thus proper choice of values for the feedback gain and

the sampling time is considerably simplified.

4.7 Conclusions

We have presented one approach where feedback guins and sampling
time can be readily selected to guarantee that the sampled data
controlled structure is stable. Our conditions imply that fcrce
actuators and velocity sensors be located to satisfy a specific
analytical condition which, in fact, depends on the sampling time. These
explicit results are in contrast to the lack of available explicit
guidelines for choosing the feedback gains and a sampling time in the

case where colocated actuators and sensors are used.
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SECTION S5

i . OPTIMAL TRACKING AND TERMINAL TRACKING MANEUVERS
& : FOR FLEXIBLE SPACECRAFT

5.1 Introduction

The problem of feedback control of flexible spacecraft undergoing

large-angle maneuvers is a topic of continuing interest in the aerospace

Eoe
LR e

community. Two types of closed-loop slewing maneuvers are of particular

interest. First, tracking maneuvers where the control is determined in

qu -

such a way as to cause the state to track or follow a desired output

state. Second, terminal trackiﬁy maneuvers where some elements of the

state are required to exactly sat.isfy nonzero terminal constraints.
The necessary conditions defining the solutions for tracking and
terminal tracking problems are well known. Nevertheless, the

computational burden required to numerically integrate the resulting

systems of coupled nonlinear Riccati-~like differential equations has

g seriously hindered the common application of these control techniques,

- To overcome the computational difficulties noted above, closed

: form solutions are presented for the necessary conditions defining the
solutions for the following lineayr time-invariant control problems;

. (a) The linear tracking problem;

(b) The terminal tracking problem;

{(c) The state trajectories for the conventional closed-loop

system dynamics equation.

The remainder of the section is presented in three parts. Section

A 5.2 presents closed form solutions for the Riccati and prefilter
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equations of the linear tracking problem. Maneuver simulations are
presented for both conventional and control-rate-penalty control designs
(Refs. 5-1, 5-2]. Section 5.3 presents closed form solutions for the
three nonlinear coupled Riccati-like differential equations, defining the
solution for the terminal control problem. Maneuver simulations are
presented for both conventional and control-rate-penalty control

designs., Section 5.4 presents a closed form solution for the state
trajectories of a conventional feedback control system, when the plant
and the state are assumed to be perfectly known. The solution for the

state is presented in a simple recursive form.

5.2 Closed Form Solution for the Linear Tracking Problem

In this subsection the problem of maneuvering a flexible
spacecraft through a large angle is considered, where the feedback
control system is required to track a desired output state. The desired
output state is assumed to be pro;ided from an open~loop solution for the
linear time invariant system model (see References 5~1 and 5-2 for

examples of suitable open-loop solutions).

The optimal control problem of this section is formulated by
defining a performance index which consists of an integral of quadratic
forms in the state, control, and control-rate. The necessary conditions
for this problem lead to two nonlinear Riccati-like differential
equations [Ref. 5-6}. One eéuation is the standard Riccati equation,
which possesses a well-known solution in terms of a steady-state plus
transient term [Ref. 5-1]. The remaining vector equation is a prefilter
equation which has foreknowledge of the desired output state, and is
coupled to the standard Riccati equation. In Section 5.2.4, a new closed
form solution is presented for the auxiliary Riccati-like vector

equation.

5-2




5.2.1 Optimal Linear Tracking Problem

The optimal reference tracking problem is formulated by finding

the control inputs u(t) to minimize

t
£
, 1 . 2 1 _ 2 2
I o= g zr(ty) - oz(e g+ 5 [ [1zr(e) 2(e)1g + ra(t)agJae
t
Q (5-1)
for the system
X = AX + Bu , x(to) = X (5-2)
z = Cx (5-3)

where Iplw = pTwP, z* is the desired output state, A is the system
dynamics matrix, B is the control influence matrix, C is tne measurement
influence matrix, S is the terminal state weight matrix, Q is the state
weight matrix, R is the control weight matrix, x is the state, and u is
the control. (For maneuvers where the state is augmented by the control
and control-rate penalties, the A and B matrices of Eq. (5-2) are

modified as shown in Reference 5-1).

5.2.1.1 The Open-Loop Control Problem for the Desired Qutput State

The desired output state, z*(t), in Eq. (5-1) is assumed to be
provided by the solution for the following open-loop control problem,

where we zeek the control inputs u*(t) to minimize

te

J* = ~% [ [m=xten
t
o

2

2
o * fu* () 1, Jde (5-4)
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for the system

]
*
L}

* * >R - - -
AxX* + Bux, X (to) x;, x*(tf) x% (5-5)

z* = Cx*

As shown in Reference 5-2, the closed form solution for the
open-loop problem defined by Egs. (5-4) and (5-5) can be written as
: x* () ( x
{ = en(t-to) ° (5-6)
A*(t)/ A*
4 o
where
A -B(R*)'B"
q = [) (5-7)
§ -o* -t
A* =1{¢ >-1{x* - ¢ x*} ' {5-8)
\ x*A* X*X*
1 e(°) = the exponential matrix,
5 A*(t) = the costate vector for the open-loop
solution,
3 I
4 and Sy ? ¢x*k* are partitions of e(*) for t=t..
) To obtain x*(t) from Eq. (5-6), the following mapping equation is
! defined:
]
P
- > 5-4
P,
SN




x*(t) = u M) ' (5-9)

where H = [I 0] is a (n x 2n) selection operator and x* is (n x 1).

As shown in what follows, the explicit presence of el*) in Eq.
(5-9) permits a closed form solution to be obtained for the prefilter

equation of the linear tracking proolem.

5.2.2 Necessary Conditions for the Linear Tracking Problem

The necessary conditions defining the optimal tracking protlem for
Bgs. (5-1), (5-2), and (5-3) are givren by the following Riccati-like
dirfferential equations (Ref. (5-3), pp. 100-102]:

5 = <-PA - AT? + PBR™'B'P - C'QC P(t,) = cTsc (5-10)
E = -[r- BR-1BTP]TF - CTQCx* ;o Ele) = CTSCx*(tf) (5-11)
where the optimal control is given by
-1 T
1 = -R B [Px - g] (5-12)

5.,2.3 Closed Form Solution for the Time-Varying Riccati Equation

The solution for Eq. (v-10) has been previously cbtained in

References 5~2 and 5-4, and can be written as

-1
P(t) = Pss + 0 (t) (5-13)



where Pgg is the solution for the algebraic Riccati equation

-P_A-AP _+P BR BP - e = o (5-=14)
8SSs SS Ss SS

and the closed form solution for ©(t) can be shown to be

- ~T
A(t-t) A (t-t)
elt) = g__+e £ [0y = 04 ]e £ (5-15)

- -1.7T T -1 : o .
where A = A - BR B Pss' ef-(c SC-PSS) , and ess satisfies the algebraic

Lyapunov equation

= =T -1.7T
AGSS + OSSA = BR B (5-16)

5.2.4 Closed Form Solution for the Prefilter Equation

The solution for £ in Eq. (5-11), follows on assuming the product

form solution

E(t) = 0 '(t) r(t) (5-17)

where © is detined by Eq. (5-15) and the linear constant coefficient

vector differential equation for r can be shown to be

PoRr o= -ocTooxr , r(t,) = o cTsCx (£ ) (5-18)

(To derive Eq. :5-18) one requires the diffevential equation for @ given

by: 6 =A0 + GA® - BR™'BY),

The solution for v in Eq. (5~18) can pe shown to be

- L

r. - [ e ParncTooxt(n ar] (5-19)
o
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where the initial condition for the vector r is given by

-2t t, =
r.o= e Segclscxre) + [ ePTornc oo (1) ax (5-20)
o

The solution for the integral expression in Eq. (5-19) follows on
introducing @(t) from Eq. (5-15) and x*(t) from Eq. (5-9; into Eq.
(5-19), leading to

t = t =
[ 2T etocenr (1) ar = f e"ATD1eQT at
[o] [o]
x*
t =T o
A, Gt . -
+ D, c{ e’ 'De m]é (5-21)
*
(A3
whero
D, = O CIeCH (5-22)
// 1 Ss
-At -A't
£ f
D, = e [0 - o ]e (5-23)
T
D3 = C (CH (5-24)

As shown in Reference 5-5, the integrals involving the matrix
exponentials in Eq. (5-21) can be wasily evaluated by defining the

constant matrices

>
o
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and computing the matrix exponentials

F1(t) G1(t) F3(t) Gz(t)
C1t C2t
e = ’ e =
0 F2(t) 0 F4(t)
where -
At at ATt
F1 (t) = e, Fz(t) = F4(t) = e , Fs(t)' = e
- t - =T t T
At -AT Q1 A"t At QT
G1(t) = e i e "D dr, G2(t) = i Dye™ dr

As a result, it follows that the integrals in Eq. (5-21) are given by

t -

[ e™Dear = rltoie (o) (5-25)
[¢]

t =T

[ e" eMar = Flinie,(n) (5-26)
o

5.2.4.1 Recursion Relationships for the Integrals of Exponential

Matrices

In order to evaluate Eqs. (5-25) and (5-26) at discrete time
steps, the semi-group properties of esponential matrices are now
exploited; yielding the following recursion relationships for the matrix

R -
partitions of Lrln+lae o eC2(nsnlar,




1

Fy [(n+1)at] F (a€) Fi(nat) , F(0) = I , j = 1,2,3,4

G, [(n+1)at] = F,(8t)G, (nAt) + G (AL)F,(nAt) , G,(0) = 0
5 [(n+n)at] = F (AL)G,(nat) + G,(At)F,(nat) , G,(0) = 0
from which the integrals of Eq. (5-25) and (5~26) follow as
:n+1)At e'iTD1e9Tdr = Fg[(n+1)At] G, [(n+1)a¢t] (5-27)
(n+1)At --'I‘T art 7
c{ e” Deldr = .F1[(n+1)At] 6,[(n+1)at] (5-28)
where At = (tg - tg)/m and m is the total number of discrete time

steps.,

5.2.4.2 Vector Recursion Relationships for r{(n+1)At]
Substituting Eq. (5-27) and (5-28) into Eq. (5-21), yields

{(n+1) At -
/ e Po(ncToexr (1)1dt =
o

= Fg[(n+1)At] G, [(n+1)at]s

+ DZFT[(n+I)At}Gz[(n+1)At]s”

or



T T T MR

T .
Fy[(n+1)at][F, (AE)G, (nat) + G (AE)F (nat) }s

.

T :
+ D, [(n+1)at]{F (A£)G,(nat) + G,(ALIF,(nAt) s

where s T = [(x*)T (A*)T] -
o o o)

The number of mathematical operations required in the equation
above can be minimized by defining the f£ollowing three vector functions

and associated recursion relationships:

n
1]
]
o

% [(n+1)at] = 6 [(n+1)at]s = F (ac)x (nat) + G (at)x (nat); x, (0)

1
(=]

x,[(n+1)at] = 6, [(n+)at]s = F (AE)x,(nAt) + G,(At)x4(nat); x,(0)

L}
[}

x,[(n+1)4t] = F [(ne1)at]s = F,(At)x,(nat); x,(0) = s

As a result, the recursive expression for the integral in Eq.

(5-19), can be written as

(n+1)At -
e e+ s 5 (]

+ DaF?[(n+1)At] x,[(n+1)at]

where the recursion relationships for the matrix partitions G1[(n+l)At]
and Gz[(n+1)At] have been replaced by the vector recursion

relationships for x;[(n+1)at], x3[(n+1)at], and x3[(n+1)at].



5.2.4.3 Recursion Relationship for O[(n+1)At]

* Subject to the recursion relationships above, the time histories
for P and £ in Eq. (5-12) easily follow, where @[(n+1)at] in Eq. (3-13)

is given by

o[(n+1)at] = @

T
s + Fy(at) [olnat) - o__]F (at)

and

T
0(0) = o+ F(t)[o, - 6, ]F (k)

5.2.5 Illustrative Examples

The specific model considered in this section (see Figs. 5-1 and
5-2) consists of a rigid hub with four identical elastic appendages
attached symmetrically about the central hub. In particular, the
following idealizations are considered: (i) single-axis maneuvers; (ii)
in-plane motion; (iii) anti~symmetric deformations; (iv) small linear
flexural deformations; (v) only the linear time-invariant form of the
equation of motion is considered; and (vi) the control actuators are
modelled as concentrated torque generating devices. The distributed
control system for the vehicle consists of: (i) a single controller in
the rigid part of the structure, and (ii) a single controller in each
elastic appendage. 1In the optimal control performance index, however,
the control weighting matrices are adjusted in order to have the rigid
body control provide the primary torque for maneuvering the vehicle,
while the appendage controllers act principally as vibrational

SUPPressors.

For all cases, the folléwing confiquration parameters are assumed:
the moment of inertia of the undeformed structure abeut the spin axis, I,
1s 6764 kg-m2; the mass/length ratio of the four identical elastic
appendages, g, is 0.04096 kg/m; the length of each cantilevered

appendage, I, is 35 m; the flexural rigidity of each cantilevered
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appendage, EI, is 1500 kg-m3/s2; and the radius of the rigid hub, r,

is 1 m. For simplicity, each appendage is assumed to have one -~ontroller
located half-way along its span. In the integrations Sver the mass and
stiffness distributions, the radius of the hub is not neglected in
comparison to the appendage length. In the structural modeling
equations, the following comparison functions have heen adopted as

"assumed modes"

+1
!

¢P(x-r) = 1 - cos[pn(x-r)/L] + 0.5(-1) pn(x-r)/L]2

(p = 1,2,”’,“) (5-29)
which satisfy the geometric and physical boundary conditions.

0 (5=30)

=

' = 1t = tee =
¢p x=r = ¢p X=r ¢p X=r+lL ¢p X=r+L

of a clamped free appendage, where (*)' = d(*)/dx. In addition, full

state feedback is assuned for the resvlts of this section.

The output vector is assumed to be given by

}* (5-31)

y = {y. v v, v, vo
1 73 Y3 ¥4 ¥y
where

g, = central hub angular velocity

Y, = four tines the angular velocity at each apperdage controller
location relative to the central hub

y3 = hub angular position
y4 = four times the tip deflection of each apgpendage

¥g = controls and control~rates
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The number of elements in y2 is given by the number of controllers on
each of the four appendages. The output sub-vector Ye exists when
control-rates are penalized. The elements of Yg correspond to the

additionally augmented states.

Referring to'Tables 5-1a and 5-2, the grabhical sunmaries of the

states and controls are discussed qualitatively in what follows.

Case 1 (Fig., 5-3) presents a terminal controller example maneuver
in which two flexible modes: are co..trolled in addition to the rigid body
rotation. There are six states in this problem, all of which are
specified at the final time., The time histories for this case are
virtually identical to the results obtained from an open-loop controller
using the same weight matrices in the performance index. The jump
discontinuities in the control torques at the initial and final times are
characteristic of controllers with no penalties on Fhe control-rates in
the performance index. BAs shown in Reference 5-1, the presence of these
discontinuities tends to excite both modeled and unmodeled high frequanay

structural modes.

Case 2 (Fig. 5-4) presents the same maneuver as in Case 1, except
that the performance index now includes penalties on the first and second
time derivatives of the control torques [Ref. 5-2]. Including these
penalties allows the control torques and torque-rates to be specified at
the initial and final times, thereby eliminating the terminal jump
discontinuities in the control profiles. ior this particular control
problem, the states are augmented to include the control and first time-
derivative of the control, while the second time-derivative of the
control becomes the commanded input to the augmented system. On
comparing with the results of Case 1, one finds much smoother modal
;mplitude and control torque time histories, although the peak torques

and tip deflection are somewhat higher than those in Case 1.
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Case 3 (Fig. 5~5) presents the results of a spin-to-rest maneuver
in which the weight matrices and final conditions are }dentical with
those of Case 2. The initial conditions are different from those in Case
2, but the time-varying feedback gains are identical., As the plots in
Figure 5-7 show, the terminal controller has little difficulty in

bringing the system to the required final conditions.

Case 4 (Fig. 5-6) presents the results of a spin-to-rest maneuver
where off-nominal plant parameters are used., In particular, the
moment of inertias for the hub and appendages are increased by 10% and
the appendage mass per unit length is decreased by 10%, while the
time-varying feedback gains are computed using the nominal structural
parameters. Although thg structural paraméters are changed by only 10%,
the overall effect.on the entire structure is quite large. Specifically,
the first and second mode eigenvalues, w2, are increased by 16% and 22%
respectively, while the ratio of the hub moment of inertia to appendage
moment of inertia is increased by 22%. Nevertheless, the plots show that
most of the sta<e variables reach their prescribed terminal boundary

conditions.

In Cases 1 through 4 the results have been compared with the
cerresponding open-loop maneuvers, and have been found to be identical
within plotting accuracy, as expected. Furthermore, the closed form
solutions for P(t) and E(t) have alsc been compared with the backward

integrated solutions of Eqs. (5-10) and (5-11) for verification.

5.3 Closed Form Solution for the Terminal Tracking Problem

In this subsection the problem of maneuvering a flexible
spacecraft through a large angle is considered, wh:re the terminal state
is subject to constraints. The basic approach differs from the standard

linear quadratic regulator design, in that a quadratic penalty term on
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the final value of the state is not included in the performance index.
As a result, the numerical difficulties associated with handling large

terminal penalty matrices are not encountered.

The optimal ccntrol problem of this section is specified by
defining a performance index which consists of an integral of guadratic
forms in the state, control, and control-rates, where the “erminal state
is subject to constraints. In particular, the terminal constraints
replace the conventional weighted quadratic form in the terminal states.
The necessary conditions for this problem lead to three nonlinear
Riccati-like differential equations [Ref. 5-6]., One equation is the
standard Riccati equation, which possesses a well-known solution in terms
of a steady-state plus transient term (see Eq. (5-13)). On the other
hand, the remaining two ejuutions are coupled to the standard Riccati
equation. In Sections 5.3.3 and 5.3.4, new closed form solutions are

presented for the two auxiliary Riccati-like equations.

5.3.1 Optimal Terminal Controller

The optimal terminal control problem is formulated by finding the

control inputs u(t) to minimize

£
J = %- f (xTFTQFx + uTRu) dt (5-32)
to
for the system
X = Ax + Bu given x(to) (5-33)

with outputs
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Yy = 1’4 (5-34)

where X, u, A, B, Q, and R are defined following Eq., (5-3), F is the
measurement influence matrix, and the stzte is subject to the specified

terminal constraints

x, () = X, + 1=1,e00,q (q<n) : (5-35)

Of particular interest is the fact that the performance index of, Eq.
(5-32) does not contain a terminal weight matrix which penalizes the

final values of the state.

5.3.1.1 Necessary Conditions for the Terminal Tracking Problem

As shown in Reference 5-6, the necessary conditions defining the
optimal solution are given by the following coupled Riccati-like matrix

differential equations

P+ PA+ AP - PBR 'BP + FQF = O0; P(t,) = 0 (5-36)
$ + (AT - PBR-1BT)S = 0 ; ST(tf) = (3p/3x) N (5=37)
. £
& = s°BRB'S ; Glt,) = 0 (5-38)

where wT = [§1, Xos o9, Eq] and the optimal continuous feedback law is

2I
given by

u(t) = =C(t)x{t) ~ D(t)y (5-39)

where
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R-1B'r(P _ sc"sT) (5-40)

R-1BTSG-1 . (5-41)

(9]
]

o
L}

The control vector u of Eq. (5-39) takes the state vector from x(t,) at
time tgy to ¢ at time tg, while minimizing the cust function of Eq.
(5-32) .

In the next section closed form solutions are presented for Egs.
(5-36), (5-37), and (5-38), thus reducing the solution for the feedback
gains to the direct computation of algebraic equations without numerical

integration.

53,2 Closed Form Solution for the Time-Varying Riccati Equation

-1,
P(t) = PSS + 0 (t) (5-42)

where Pyg is the solution for the algebraic Riccati equqtion

-ATP -P A+P BRBP - FTQF = 0 {5-43)
ss sSs ss Ss
and the solution for @(t) follows as
K(t-tf) -1 KT(t-tf)
olt) = ess - e (Oss + Pss)e (5-~44)
() 1.7

where e is the exponential matrix, A = A = BR B P, and the solution

for @ss is defined by Eq. (5-16).

5.3.3 Closed Form Solution for S(t)

The new solution for S(t) in Eq. (5-37) follows on assuming the

product form solution
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s(t) = 0-1(t)sc(t) _ (5-45)

where @ is defined by Eq. {5-44) and S is to be determined.
Substitution of Eq. (5~45) into Eq. (5~37) leads to the following

linear constant coefficient matrix differential equatior for Sp(t):

° - -
Sc(t) -3 Sc(t) = 0; Sc(tf) = --Pss S(tf) (5-46)

from which it follows that the solution for S(t) in Eq. (5-4%, can be

written as:

~

A(t-t,)
-1 £ -1
s{t) = -9 (t)e Pss S(tf)

where the differential equation for © is given by: O = AQ + GAT-- BR BT,
The solution for Sy(t) in Eg. (5-46) can be shown to be
Rle-ty)

Sc(t) = -e Peg S(tf) (5-47)

5.3.4 Closed Form Solution for G(t)

The solution for G(t) in Eq. (5-38) can be shown to be:
G(t) = ST(£)a(t)S(t) + ST(t_ )P | s(t.) {5-48)
£’ ss £ '

which can be easily verified by direct differentiation.

5.3.5 Calculation of the Optimal Control

The control is computed by writing Eq. (5-39) in the form

5-18




T TR

L 1 Mt o e s e e WA WY N T e - " - - s . s

u(t)

=C(t) x(t) - D(B)y

-1.T -1
= -R B[P x(t) + 6 (£)x(t) + S(t)x, (t)] (5-49)

where xq(t) is obtained by solving the following linear equation:

G(t)x1(t) = ¢ - S(t)x{t)

5.3:6 Example Maneuvers

The vehicle configuration and system parameters of Section 5.,2.5
are assumed for the example maneuvers of this section. Furthermore, full
state feedback is assumed for the results of thies section and the output

vector is assumed to be defined by Eq. (5-31).

Referring to Tables 5-1b and 5-3, the graphical summaries of the

states and controls are discussed qualitatively in what follows,

Case 1 (Fig. 5-7) presents a terminal céntroller example maneuver
in which two flexible modes are controlled in addition to the rigid bod:
rotation. There are six states in this problem, all of which are
specified at the final time. As a result, P, S, and G in BEgs. (5-42),
(5-45) , and (5-48) are 6 x 6 matrices, The time histories for this case
are virtually identical to the time histories obtained from the
corresponding open~loop controller, using the same weight matrices in the
performance index. The observed jump discontinuities in the control
torques at the initial and final times are characteristic of this type of

control design.

Case 2 (Fig. 5-8) presents a spin-up maneuver with two flexible
modes controlled, in which the final angle is free to be determined by
the controller. 2As a result, the P, S, and G matrices have the following

dimensions: P(6x6), S(6x5), and G(5x5)., 1In particular, the final angle
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selected is exactly the angle selectad by the analogous open~luop free

final angle transversality conditions [Ref, 5-1]}.

Case 3 (Fig. 5~9) presents the same maneuver as in Case 1, except
that the performance index now includes penalties on the first and second
time derivatives of the control torgues [Ref, 5-2]. Including these
penalties allows the control torques and torque~rates to be specified at
the initial and final times, thereﬁy eliminating the terminal jump
discontinuities in the control profiles. For this particular control
problem, the states are augmented to include the control and first time-~
derivative of the control, while the second time-~derivative of the
control becomes the commanded input to the augmented system. On
comparing with the results of Cage 1, one finds a much smoother modal
amplitude and control torque time history, althéugh the peak torques and
tip deflection are somewhat higher than those in Case 1., The dimensioens

of the P, S, and G mwtrices are all 10x10 for Case 3.

Cage 4 (Fig. 5-10) presents the same maneuver as in Case 2, with
the additional penalty on the control-rates. As in Case 2, all the
states, controls, and control-rates are specified at the final time for
the terminal controller, except for the maneuver angle, which is not
specified at the final time. As a result, the P, S, and G matrices have
the following dimensions: P(10x10), S(10x9), and G(9x9). On comparing
the results with Case 2, the modal amplitude and control torgne time
hiscories are found to be much smoother, although tiie peak values are
higher, Moreover, the terminal jump discontinuities in the control
torque shown in Case 2 are eliminated in Case 4, thus making it less

susceptible to control epillover,

Case 5 (Fig. 5-11) presents the results of a maneuver in which the
weight matrices and final conditions are identical with those of Case 3.
The initial conditions are 4’ fferent from those in Case 3, but the
time-varying feedback gains are identical. As the plots in Figure 5-10
show, the terminal controller has little difficulty in bringing the

system to the required final conditions.,
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Case 6 (Fig. 5-12) presents the results of a maneuver in which the
moment of inertias of the hub and appendages are increased by 10% and the
appendage nass per unit length is decreased by 10%, while the
time-varying feedback gains are computed using the nominal structural
parame ters. Although the structural parameters are changed by only 10%,
the overall effect on the entire structure is quite large., Speci“ically,
the first and second mode eigenvalues, w2, are increased by 16% ind
22%, respectively, while the ratio of the hub moment of inertia to
appendage moment of inertia is increased by 22%. However, the plots show
that wich the terminal coﬂtroller, most of the state variables reach

their prescribed termial boundary conditions.

The results of in Cases 1 through 5 have been compared with the
correeponding cpen-loop maneuvers, and have been found to be identical
within plotting accuracy, as expected. Furthermore, the closed form
solutions for P(t), S(t), and G(t) have also been compared with the

backward integrated solutions for verification.

'
S.4 An Analytic Sclution for the State Trajectories of a Feedback

Control System

a4s part of the noémal process of a control system design, the
analyst typically is interested in determining the state trajectories for
the controlled system. In practice, this process is straightforward,
gince the feecdback form of the control can he introduced in the equation
of motion and numerically inteqrated. MNevertheless, this process can be
computationally intensive if either time-varying control gains are used
or small integration step sizes are required by the presence of high

frequency system dynamics.

In an effort to overcome the computational difficulties listed

above, a change of variables is presented in this cubsection for the
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standard closed-loop system dynamics equation, which permits a closed

form expression to be obtained for the state trajectories.

5.4.1 Optimal Control Problem

The fixed time linear optimal control problem is formulated by

finding the control inputs u(t) to minimize

J = E-ngTSFxf +-% zf (x"FToPx + u'Ra) at (5-50)
Q
for the system
X = Ax + Bu , given x(to) (5-51)
y = Fx {(5-52)

where %, u, A, B, F, Q, R, and S are defined following <7. (5-3).

As shown in Reference 5-6, the optimal control = given by

ult) = -RTBTR(r)x(t) (5-53)
where P is the solution for the differential masrix Riccaci equation

B = -AP - DAY 4+ PERTBR-0Q P(eg) = S (5-54)

Upon introducing Eq. (5-53) into Eq. (5-51), the standard closed-

loop system dynamics equation follows as
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x(t) !

[a - 7B ]x(8) ;% = x(t) (5-55)
o] o

.

(It should be observed that the equation above is the adjoint to the
homogeneous part of Eg. (5~11).)

To obtain the solution for Eq. (5-55), the following closed form
solution for P(t) {Refs. 5«1, 5-3] is introduced in Eg. (5-55):

. -1
. P(t) = Pss+0 (t) (5-56)

where Pgg is is defined by Eq. {5-43). The variable 0(t) is given by

Ale-ty) » AT (e-t,)
6lt) = @ +e [(FsP-p )" -0 _le (5-57)
where A = A - BR-1BTPSS, e(°) is the exponential matrix, and the solution

for Qgg is defined by Eq. (5-16).

Substituting Eq. (5-56) into Eg. (5-55), yields the modified form

of the closed~loop system dynamics equation
x(t) = [R-m7BT o) ]x(e) 4 x_ = x(t)  (5-58)
o] o

where it follows that the equation above is nonautonomous.

5.4.2 Change of Variables for x(t)

To simplify Eq. (5~58) the following coordinate transformation for

the dependent variable x(t) is introduced:
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x(t) = olt)r(t) {5-59)

where O(t) is given by Egq. (5-57) and r(t) is a vector function which is

to be determined.
Upon differentiating Eq. (5-59) we find
X =

ér + or (5-€0)

or

X = (Ro+ @A - BR'B)r+ or (5-61)
where @ in Eq. (5-60) has been rep}aced‘by: d =150+ GAT - BR™'B.

The differential equation for r is obtained by introducing Egs.

(5-59) and (5-61) into Eq. (5-38), leading to

ot + A%) = 0

(5-62)
from which it follows that the linear constant coefficient vector
differential equation for r is given by

P o= A 5 r o= 0 (t)x (5-63)
o oo
The solution for v follows as
AT (k-t )
r(e) = e r, (5-64)

Substituting Eq. (5-64) into Eq. (5-59) produces the desired

solution for the state trajectories as
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-RT(t-t )
x(t) = olt)e ° £ (5-65)

5.4.3 Recursion Relationship for Evaluating the State at Discrete Times

If the solution for x{t) is required at the discrete times
tg = to + kat (k = 1,e0¢,N) for At = (tg - to)/N, then Eq. (5-65)

can be written as

x(t ) = Ar +b , k=000 (5-66)
where
S?to At AT(t -t)
Ao = esse ’ b° = e [(F S&~P ) =0 s]e £
“ATAt -AA
Ak = A‘(-1 ' bk e tl’:ak1 : k=1,00¢,N

5.4.4 Conclusions

Closed form solutions for the feedback gains fequired by an
optimal linear tracking controller and an optimal terminal controller
have been developed. Nesults of example maneuvers have been shown which
demonstrate the efficiency and validity of the formulations described.
The use of control-rate penalties in each case have been shown to improve

the overall system response.
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5-5

In addition, a straightforward algorithm has been presented for

generating the state trajectories for a feedback control system. The
algorithm is computationally efficient in that no numerical integration
is required and simple recursion relationships generate the desired
solution at discrete times. Furthermore, this algorithm has significant
,potential if used in conjunction with algorithms which attempt to enhance
system robustness, by iteratively refining the weighting matrices

appearing in Eq. (5-50).
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Table S5-1a. Test case maneuver descriptions:

linear tracking problem.

Case | No., of e-t xV g 8 8 8 cpy'?
N Mode £ o o o £ f
. Oe s (sec) (rad) (rad/s) (rad) (rad/s) (sec)
1 2 15 0 0 0 0.4 0 27
’ 2 2 15 2 0 0 0.4 0 59
3 2 15 2 0.15 -0.02 0.4 (0] 58
4 2 1.5 2 0 0 0.4 0 58
i3
g Table S5-1b., Test case maneuver descriptions:
% terminal tracking rroblem.
1
i
”? Case | No. 0¢f - t_-t k(1) 8 8 6 8 CPU(Z)
B No. Modes £ o ° ° £ £
; (sec) (rad) (rad/s) (rad) (rad/s) (sec)
1 2 15 0 o0 0 0.4 0 34
-
;g' 2 2 15 0 0 0 (free) 0.04 22
e
i 3 2 15 2 0 0 0.4 0 83
8¢
4 2 15 2 0 0 (free) 0.04 77
5 2 15 2 0.15 -0.,02 0.4 0 83
6 2 15 2 0 0 0.4 0 83

Notes:

1. k denotes the order of the highest time derivative of the control
which is penalized in thé performance index.

2. The CPU time is obtained using an Amdahl 470-V/8 with 150 time-
steps for each integration.
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Table 5-2., Weighting matrices for example maneuvers:
linear tracking problem.
Case No. Open-Loop Weighting Matrices(1:2)
1 Q* =diag [1(=5) 1(=3) 1(-3) 1(=3) 1(=3) 1(-3)]
R* = diag [1(-3) 1(0)]
o* =wm:®wmew11
Hop = diag [1(=5) 1(=3) 1(=3) 1(-3) 1(-3) 1(~3)]
2,34 | W =adisg [1(-9) 1(-9)]
W,, = diag [1(-9) 1(-9)]
R* = diag [1(=3) 1(1)]
Closed-Loop Weighting Matrices
1 Q =diag [1(=3) 1(-2) 1(~3) 1(~5)]
R =diag [1(-3) 1(0)]
2,3,4 | @ =aiag [1(=3) 1(=2) 1(=3) 1(=5) 1(=9) 1(-9) 1(-9) 1(-9}]
R =diag [1(-3) 1(1)]
Noées:
1. b(a) denotes b x 102
2. @ denotes direct sum
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{U1, U2’ veu Us} = SET OF DISTRIBUTED CONTROL TORQUES

Figure 5-1, Undeformed structure.

Figure 5-2. Antisymmetric deformation.
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Figure 5-3.
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control-rate penalty with k = 2,

Figure 5-4.
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Figure 5-6.
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Figure 5-8.

Case 2, free final angle spin-up maneuver, 2 modes, 5 controls.
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Case 5, spin~to-rest maneuver, 2 modes, 5 controls,

control-rate penalty with k = 2,

Figure 5-11.
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